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Deep Learning

Supervised learning typically involves 

manual feature extraction

Deep learning typically does not 

involve feature extraction
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Reinforcement Learning vs Machine Learning

Reinforcement learning: 

 Learning a behavior or 

accomplishing a task through 

trial & error 

[interaction]

 Complex problems typically need 

deep models 

[Deep Reinforcement Learning]

Reinforcement Learning Toolbox

New in
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Reinforcement Learning enables the use of Deep Learning for 

Controls and Decision Making Applications

A.I. Gameplay

Finance

Robotics

Autonomous driving



7

Why is reinforcement learning appealing?

Teach a robot to follow a straight line using camera data



8

Let’s try to solve this problem the traditional way
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What is the alternative approach?
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A Practical Example of Reinforcement Learning
Training a Robot to Walk

 Robot’s computer learns how to walk…                                                 

(agent)

 using sensor readings from joints, torso,…              

(state)

 that represent robot’s pose and orientation,… 

(environment)

 by generating joint torque commands,… 

(action)

 based on an internal state-to-action mapping…                                          

(policy)

 that tries to optimize forward locomotion, … 

(reward).

 The policy is updated through repeated trial-

and-error by a reinforcement learning 

algorithm
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Connections with Controls

OtAt

Rt = 𝑥 𝑡 𝑇𝑅𝑥(𝑡) + 𝑢 𝑡 𝑇𝑄𝑢(𝑡)
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Define Environment to Generate Data

Physical modeling of robot 

dynamics and contact 

forces using Simscape

Agent

The environment provides 29 observations to the agent. 

The observations are: Y (lateral) and Z (vertical) translations of the torso center of mass; X (forward), Y (lateral), and 

Z (vertical) translation velocities; yaw, pitch, and roll angles of the torso; yaw, pitch, and roll angular velocities; 

angular position and velocity of 3 joints (ankle, knee, hip) on both legs; and previous actions from the agent. The 

translation in the Z direction is normalized to a similar range as the other observations.
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Define Environment to Generate Data

Agent
Reward defines task to 

learn
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Define Environment to Generate Data

*Reward function inspired by: N. Heess et al, "Emergence of Locomotion Behaviours in Rich Environments," Technical Report, ArXiv, 2017.

https://arxiv.org/pdf/1707.02286.pdf
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Define Policy and Learning Algorithm

Define agent’s policy and 

learning algorithm

Agent
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Code for Configuring Agent and Training
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Create Critic Network
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Create Actor Network
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Create DDPG Agent
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Training the Agent
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Train Robot to Walk and Track Progress
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Train Robot to Walk and Track Progress

Episode Number

...

Accelerate Training with Parallel Computing
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Deploy Policy to Embedded Device
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Everything is Great, Right?
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Reward Function Design Matters
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Reward Function Design Matters
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Simulation and Virtual Models are a Key Aspect of Reinforcement 

Learning

 Reinforcement learning needs a lot of data 

(sample inefficient)

– Training on hardware can be prohibitively 

expensive  and dangerous

 Virtual models allow you to simulate conditions 

hard to emulate in the real world

– This can help develop a more robust 

solution

 Many of you have already developed MATLAB 

and Simulink models that can be reused
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Pros & Cons of Reinforcement Learning

Pros Cons

No need to label data before training A lot of simulation trials required

Complex end-to-end solutions can be developed

(e.g. camera input→ car steering wheel)

Reward signal design, network layer structure & 

hyperparameter tuning can be challenging

Can be applied to uncertain, nonlinear 

environments

No performance guarantees, Training may not 

converge

Virtual models allow simulations of varying 

conditions and training parallelization

Further training might be necessary after 

deployment on real hardware
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Reinforcement Learning Toolbox

New in

 Built-in and custom algorithms for reinforcement 

learning

 Environment modeling in MATLAB and Simulink

 Deep Learning Toolbox support for designing policies

 Training acceleration through GPUs and cloud 

resources

 Deployment to embedded devices and production 

systems

 Reference examples for getting started
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Predefined Environments and Many Examples

 MATLAB Environment

– 'BasicGridWorld'

– 'CartPole-Discrete'

– 'CartPole-Continuous'

– 'DoubleIntegrator-Discrete'

– 'DoubleIntegrator-Continuous'

– 'SimplePendulumWithImage-Discrete'

– 'SimplePendulumWithImage-Continuous'

– 'WaterFallGridWorld-Stochastic'

– 'WaterFallGridWorld-Deterministic'

 Simulink Environment

– 'SimplePendulumModel-Discrete'

– 'SimplePendulumModel-Continuous'

– 'CartPoleSimscapeModel-Discrete'

– 'CartPoleSimscapeModel-Continuous'

 Examples

– Grid World, MDP

– Classical Control Benchmarks 

– Automotive

– Robotics

– Custom LQR Agent



34

Extensible Environment Interface

 env = rlFunctionEnv(obsInfo,actInfo,stepfcn,resetfcn)

– obsInfo: Observation Specification

– actInfo: Action Specification

– stepfcn: Function handle for stepping the environment

– resetfcn: Function handle for resetting the environment

 Subclassing from  rl.env.MATLABEnvironment

– Custom MATLAB Environments

– Interfacing with 3rd party simulators (e.g. OpenAI Gym)
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Resources

 Reference examples for controls, 

robotics, and autonomous system 

applications

 Documentation written for 

engineers and domain experts

 Tech Talk video series on 

reinforcement learning concepts for 

engineers
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Reinforcement Learning Toolbox

New in

 Built-in and custom algorithms for reinforcement 

learning

 Environment modeling in MATLAB and Simulink

 Deep Learning Toolbox support for designing policies

 Training acceleration through GPUs and cloud 

resources

 Deployment to embedded devices and production 

systems

 Reference examples for getting started
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Questions?


