
1© 2019 The MathWorks, Inc.

Reinforcement Learning with MATLAB & Simulink

Christoph Stockhammer MathWorks Application Engineering

2

Unsupervised

Learning
[No Labeled Data]

Clustering

Machine Learning

Machine Learning, Deep Learning, and Reinforcement Learning

3

Unsupervised

Learning
[No Labeled Data]

Supervised Learning

[Labeled Data]

Clustering Classification Regression

Machine Learning

Machine Learning, Deep Learning, and Reinforcement Learning

4

Unsupervised

Learning
[No Labeled Data]

Supervised Learning

[Labeled Data]

Clustering Classification Regression

Machine Learning

Machine Learning, Deep Learning, and Reinforcement Learning

Deep Learning

Supervised learning typically involves

manual feature extraction

Deep learning typically does not

involve feature extraction

5

Unsupervised

Learning
[No Labeled Data]

Supervised Learning

[Labeled Data]

Clustering Classification Regression

Deep Learning

Machine Learning

Reinforcement

Learning

[Interaction Data]

Decision

Making
Control

Reinforcement Learning vs Machine Learning

Reinforcement learning:

 Learning a behavior or

accomplishing a task through

trial & error

[interaction]

 Complex problems typically need

deep models

[Deep Reinforcement Learning]

Reinforcement Learning Toolbox

New in

6

Reinforcement Learning enables the use of Deep Learning for

Controls and Decision Making Applications

A.I. Gameplay

Finance

Robotics

Autonomous driving

7

Why is reinforcement learning appealing?

Teach a robot to follow a straight line using camera data

8

Let’s try to solve this problem the traditional way

Motor

Control

Leg &

Trunk

Trajectories

Balance

Motor

Commands

Observations

Sensors

Camera

Data

Feature

Extraction

State

Estimation
Controller

Observations

Motor

Commands

9

What is the alternative approach?

Sensors

Camera

Data

Feature

Extraction

State

Estimation
Controller

Observations

Motor

Commands

Camera

Data

Sensors

Motor

Commands

How do we

design this?

10

A Practical Example of Reinforcement Learning
Training a Robot to Walk

 Robot’s computer learns how to walk…

(agent)

 using sensor readings from joints, torso,…

(state)

 that represent robot’s pose and orientation,…

(environment)

 by generating joint torque commands,…

(action)

 based on an internal state-to-action mapping…

(policy)

 that tries to optimize forward locomotion, …

(reward).

 The policy is updated through repeated trial-

and-error by a reinforcement learning

algorithm

AGENT

Reinforcement

Learning

Algorithm

Policy

ENVIRONMENT

ACTION

REWARD

STATE

Policy

update

11

Connections with Controls

OtAt

Rt = 𝑥 𝑡 𝑇𝑅𝑥(𝑡) + 𝑢 𝑡 𝑇𝑄𝑢(𝑡)

12

Define Environment to Generate Data

Physical modeling of robot

dynamics and contact

forces using Simscape

Agent

The environment provides 29 observations to the agent.

The observations are: Y (lateral) and Z (vertical) translations of the torso center of mass; X (forward), Y (lateral), and

Z (vertical) translation velocities; yaw, pitch, and roll angles of the torso; yaw, pitch, and roll angular velocities;

angular position and velocity of 3 joints (ankle, knee, hip) on both legs; and previous actions from the agent. The

translation in the Z direction is normalized to a similar range as the other observations.

13

Define Environment to Generate Data

Agent
Reward defines task to

learn

14

Define Environment to Generate Data

*Reward function inspired by: N. Heess et al, "Emergence of Locomotion Behaviours in Rich Environments," Technical Report, ArXiv, 2017.

https://arxiv.org/pdf/1707.02286.pdf

15

Define Policy and Learning Algorithm

Define agent’s policy and

learning algorithm

Agent

16

Code for Configuring Agent and Training

17

Create Critic Network

18

Create Actor Network

19

Create DDPG Agent

20

Training the Agent

21

Train Robot to Walk and Track Progress

Episode Number

E
p
is

o
d
e
 R

e
w

a
rd

22

Train Robot to Walk and Track Progress

Episode Number

...

Accelerate Training with Parallel Computing

E
p
is

o
d
e
 R

e
w

a
rd

23

Deploy Policy to Embedded Device

24

Everything is Great, Right?

25

Reward Function Design Matters

26

Reward Function Design Matters

27

Reward Function Design Matters

28

Reward Function Design Matters

29

Reward Function Design Matters

30

Simulation and Virtual Models are a Key Aspect of Reinforcement

Learning

 Reinforcement learning needs a lot of data

(sample inefficient)

– Training on hardware can be prohibitively

expensive and dangerous

 Virtual models allow you to simulate conditions

hard to emulate in the real world

– This can help develop a more robust

solution

 Many of you have already developed MATLAB

and Simulink models that can be reused

31

Pros & Cons of Reinforcement Learning

Pros Cons

No need to label data before training A lot of simulation trials required

Complex end-to-end solutions can be developed

(e.g. camera input→ car steering wheel)

Reward signal design, network layer structure &

hyperparameter tuning can be challenging

Can be applied to uncertain, nonlinear

environments

No performance guarantees, Training may not

converge

Virtual models allow simulations of varying

conditions and training parallelization

Further training might be necessary after

deployment on real hardware

32

Reinforcement Learning Toolbox

New in

 Built-in and custom algorithms for reinforcement

learning

 Environment modeling in MATLAB and Simulink

 Deep Learning Toolbox support for designing policies

 Training acceleration through GPUs and cloud

resources

 Deployment to embedded devices and production

systems

 Reference examples for getting started

33

Predefined Environments and Many Examples

 MATLAB Environment

– 'BasicGridWorld'

– 'CartPole-Discrete'

– 'CartPole-Continuous'

– 'DoubleIntegrator-Discrete'

– 'DoubleIntegrator-Continuous'

– 'SimplePendulumWithImage-Discrete'

– 'SimplePendulumWithImage-Continuous'

– 'WaterFallGridWorld-Stochastic'

– 'WaterFallGridWorld-Deterministic'

 Simulink Environment

– 'SimplePendulumModel-Discrete'

– 'SimplePendulumModel-Continuous'

– 'CartPoleSimscapeModel-Discrete'

– 'CartPoleSimscapeModel-Continuous'

 Examples

– Grid World, MDP

– Classical Control Benchmarks

– Automotive

– Robotics

– Custom LQR Agent

34

Extensible Environment Interface

 env = rlFunctionEnv(obsInfo,actInfo,stepfcn,resetfcn)

– obsInfo: Observation Specification

– actInfo: Action Specification

– stepfcn: Function handle for stepping the environment

– resetfcn: Function handle for resetting the environment

 Subclassing from rl.env.MATLABEnvironment

– Custom MATLAB Environments

– Interfacing with 3rd party simulators (e.g. OpenAI Gym)

35

Resources

 Reference examples for controls,

robotics, and autonomous system

applications

 Documentation written for

engineers and domain experts

 Tech Talk video series on

reinforcement learning concepts for

engineers

36

Reinforcement Learning Toolbox

New in

 Built-in and custom algorithms for reinforcement

learning

 Environment modeling in MATLAB and Simulink

 Deep Learning Toolbox support for designing policies

 Training acceleration through GPUs and cloud

resources

 Deployment to embedded devices and production

systems

 Reference examples for getting started

37

Questions?

