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Supervised learning typically involves
manual feature extraction

Deep learning typically does not

involve feature extraction



Reinforcement Learning vs Machine Learning
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Reinforcement Learning Toolbox

New in R2019
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Reinforcement learning:

= Learning a behavior or
accomplishing a task through
trial & error
[interaction]

= Complex problems typically need
deep models
[Deep Reinforcement Learning]
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Reinforcement Learning enables the use of Deep Learning for
Controls and Decision Making Applications

Finance

Robotics

A.l. Gameplay

Autonomous driving
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Why is reinforcement learning appealing?

Teach arobot to follow a straight line using camera data



| 4\ MathWorks

Let’s try to solve this problem the traditional way
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What is the alternative approach?
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A Practical Example of Reinforcement Learning

Training a Robot to Walk

Robot’s computer learns how to walk...
(agent)

using sensor readings from joints, torso,...
(state)

that represent robot’s pose and orientation,...

(environment)
by generating joint torque commands,...
(action)

based on an internal state-to-action mapping...

(policy)
that tries to optimize forward locomotion, ...

(reward).

The policy is updated through repeated trial-
and-error by a reinforcement learning
algorithm
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Connections with Controls
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Define Environment to Generate Data

Walking Robot: Reinforcement Learning (2D)

Copyright 2019 The MathWorks, Inc.
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Walking Robot

The environment provides 29 observations to the agent.
The observations are: Y (lateral) and Z (vertical) translations of the torso center of mass; X (forward), Y (lateral), and
Z (vertical) translation velocities; yaw, pitch, and roll angles of the torso; yaw, pitch, and roll angular velocities;
angular position and velocity of 3 joints (ankle, knee, hip) on both legs; and previous actions from the agent. The
translation in the Z direction is normalized to a similar range as the other observations.
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Physical modeling of robot
dynamics and contact
forces using Simscape
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Define Environment to Generate Data

Walking Robot: Reinforcement Learning (2D)

Copyright 2019 The MathWorks, Inc.
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Define Environment to Generate Data

r, = uj—jﬂ—ﬁﬂf+25%—[}.{}lz W
i
* v, is the translation velocity in X direction (forward toward goal) of the robot.
* v is the lateral translation displacement of the robot from the target straight line trajectory.
* 7 is the normalized horizontal translation displacement of the robot center of mass.
* W' _, is the torque from joint i from the previous time step.

* Ts is the sample time of the environment.

= Tt is the final simulation time of the environment.

*Reward function inspired by: N. Heess et al, "Emergence of Locomotion Behaviours in Rich Environments," Technical Report, ArXiv, 2017. 14



https://arxiv.org/pdf/1707.02286.pdf

Define Policy and Learning Algorithm

Walking Robot: Reinforcement Learning (2D)

Copyright 2019 The MathWorks, Inc.
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Code for Configuring Agent and Training

Create Environment Interface

Create the observation specification.

numObs = 29;
obsInfo = rlNumericSpec([numObs 1]);
obsInfo.Name = ‘"observations’;

Create the action specification.
numact = 6;

actInfo = rlNumericSpec([numAct 1], "LowerLimit’,-1, 'UpperLimit’, 1);
actInfo.Mame = 'foot torque';

Create the environment interface for the walking robot model.
blk = [mdl, /RL Agent'];

Env rlSimulinkEnv(mdl,blk,cbsInfo,actInfeo);
env.ResetFcn = @(in) walkerResetFcn{in,upper_leg length/18@,lower_ leg length/188,h/18@);
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Create Critic Network
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Create Actor Network

4\ Deep Network Designer
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Create DDPG Agent

Specify options for the critic and actor representations using rlRepresentationOptions.

criticOptions

actorOptions

= rlRepresentationOptions (' 'Optimizer’, 'adam’, 'LearnRate’,1le-3,
‘GradientThreshold',1, "L2RegularizationFacteor’,le-5);

= rlRepresentationOptions('Optimizer’, 'adam', " LearnRate’,le-4,
‘GradientThreshold®,1, "'L2RegularizationFactor’,le-5);

Create the critic and actor representations using the specified deep neural networks and options. You must also specify the action and observation information for
each representation, which you already obtained from the environment interface. For more information, see rlRepresentation.

critic

rlRepresentation{criticNetwork,obsInfo,actInfo, 'Observation’,{ 'observation"}, 'Action’,{ "action"},criticOptions);

actor = rlRepresentation(actorMNetwork,obsInfo,actInfo, 'Observation',{'observation'}, "Action’,{ 'ActorTanhl'},actorOptions);

To create the DDPG agent, first specify the DDPG agent options using r1DDPGAgentOptions.

agentOptions

agentOpticons.
agentOptions.
agentOptions.
agentOptions.
agentOptions.
agentOpticons.
agentOptions.

= rlDDPGAgentOptions;

SampleTime = Ts;

DiscountFactor = @8.99;

MiniBatch5ize = 128;
ExperienceBufferLength = 1leb;
TargetSmoothFactor = 1e-3;
MoiseOptions.MeanAttractionConstant = 1;
MoiseOptions.Variance = @.1;

Then, create the DDPG agent using the specified actor representation, critic representation, and agent options. For more information, see r1DDPGAgent.

agent = rlDDPGAgent(actor,critic,agentOptions);

4\ MathWorks
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Training the Agent

maxEpisodes = 20028;

maxSteps = Tf/Ts;

trainOpts = rlTrainingOptions(...
'MaxEpisodes' ,maxEpisodes,...
"MaxStepsPerEpisode’ ,maxSteps,...
'ScorefveragingWindowlength®,258,...
"Verbose',false,...
"Plots', "training-progress”,...
'StopTrainingCriteria’, 'AverageReward’,. ..
'StopTrainingValue',168, ...
'SavefAgentCriteria’, "EpisodeReward”,...
'SavefgentValue' ,158);

To train the agent in parallel, specify the following training options.

= Set the UseParallel option to true.
» Train the agent in parallel asynchronously.
= After every 32 steps, each worker sends experiences to the host.

« DDPG agents require workers to send "Experiences’ to the host.

trainOpts.UseParallel = true;

trainOpts.ParallelizationOptions.Mode = 'async';
trainOpts.ParallelizationOptions.StepsUntilDatalsSent = 32;
trainOpts.ParallelizationOptions.DataToSendFromiWorkers = 'Experiences’;

trainingStats = train({agent,env,trainOpts);

20



Train Robot to Walk and Track Progress

|4 Reinforcement Learning Episode Manager
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Train Robot to Walk and Track Progress

|4 Reinforcement Learning Episode Manager - X
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Deploy Policy to Embedded Device

Automatic
3 Code
Generation

Pre-trained DNN
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Everything is Great, Right?

‘ MathWorks:
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Reward Function Design Matters
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Reward Function Design Matters
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Reward Function Design Matters
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Reward Function Design Matters
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Reward Function Design Matters
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Simulation and Virtual Models are a Key Aspect of Reinforcement
Learning

= Reinforcement learning needs a |lot of data
(sample inefficient)

— Training on hardware can be prohibitively
expensive and dangerous

= Virtual models allow you to simulate conditions S (,
hard to emulate in the real world |

— This can help develop a more robust | R = ===
solution

- Many of you have already developed MATLAB /
and Simulink models that can be reused

30



Pros & Cons of Reinforcement Learning

Pros

cons

No need to label data before training

A lot of simulation trials required

Complex end-to-end solutions can be developed
(e.g. camera input— car steering wheel)

Reward signal design, network layer structure &
hyperparameter tuning can be challenging

Can be applied to uncertain, nonlinear
environments

No performance guarantees, Training may not
converge

Virtual models allow simulations of varying
conditions and training parallelization

Further training might be necessary after
deployment on real hardware

&\ MathWorks
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Reinforcement Learning Toolbox

New in R2019a

= Built-in and custom algorithms for reinforcement
learning

= Environment modeling in MATLAB and Simulink
= Deep Learning Toolbox support for designing policies

= Training acceleration through GPUs and cloud
resources

=  Deployment to embedded devices and production
systems

= Reference examples for getting started

4\ MathWorks:
4\ MathWorks

4\ MathWorks

Reinforcement Learning Toolbox  weweraseer

Reinforcement Learning Toolbox

Design and train policies using reinforcement learning

§ Download a free trial

Reinforcement Leaming Toolbox™ provides functions and blocks for training policies
using reinforcement leaming algorithms including DQN, A2C, and DDPG. You can
use these policies to implement controllers and decision-making algorithms for
complex systems such as fobots and autonomous systems. You can implement the
policies using deep neural networks, polynomials, or look-up tables

The toolbox lets you train policies by enabling them to interact with environments
represented by MATLAB® or Simulink” models. You can evaluate aigorithms
experiment with hyperparameter settings, and monitor training progress. To improve
training performance, you can run simulations in parallel on the cloud, computer
clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB Paraliel
Server™)

Through the ONNX™ model format, existing policies can be imported from deep
learning frameworks such as TensorFlow™ Keras and PyTorch (with Deep Leaming
Tooloox™). You can generate optimized C, C++, and CUDA code to deploy trained
policies on microcontrollers and GPUs.

The toolbox includes reference examples for using reinforcement leaming to design

controllers for robotics and automated driving applications.

Training and Validation
Train and simulate reinforcement learning agents

Policy Deployment
Code generation and deployment of trained policies

3 Traischware &, Conta
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Predefined Environments and Many Examples

MATLAB Environment

'‘BasicGridWorld'

'‘CartPole-Discrete’
'‘CartPole-Continuous'
'‘Doublelntegrator-Discrete’
'‘Doublelntegrator-Continuous'
'SimplePendulumWithimage-Discrete'
'SimplePendulumWithimage-Continuous'
'‘WaterFallGridWorld-Stochastic'
'‘WaterFallGridWorld-Deterministic'

Simulink Environment
— 'SimplePendulumModel-Discrete'

— 'SimplePendulumModel-Continuous'
— 'CartPoleSimscapeModel-Discrete!

— 'CartPoleSimscapeModel-Continuous'

Examples

Grid World, MDP

Classical Control Benchmarks
Automotive

Robotics

Custom LQR Agent

&\ MathWorks
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Extensible Environment Interface

= env = rlFunctionEnv(obsinfo,actInfo,stepfcn,resetfcn)
— obslInfo: Observation Specification
— actinfo: Action Specification
— stepfcn: Function handle for stepping the environment
— resetfcn: Function handle for resetting the environment

= Subclassing from rl.env.MATLABEnNvironment
— Custom MATLAB Environments
— Interfacing with 3" party simulators (e.g. OpenAl Gym)

&\ MathWorks
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Resources

= Reference examples for controls,
robotics, and autonomous system
applications

- Documentation written for
engineers and domain experts

= Tech Talk video series on
reinforcement learning concepts for
engineers
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Train DDPG Agent to Train Biped Robot to Walk
Control Flying Robot Using DDPG Agent

Train a reinforcement learning agent Train a reinforcement learn
to control a flying robot model to control a biped walking r
modeled in Simscape Mult
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Reinforcement Learning Toolbox™ provides functions and blocks for training polices [ Release Notes
using reinforcement learning algorithms including DQN, A2C, and DDPG. You can
use these policies to implement controllers and decision-making algorithms for
complex systems such as robots and autonomous systems. You can implement the
policies using deep neural networks, polynomials, or lock-up tables.

@ PDF Documentation

The toolbox lets you train policies by enabling them to interact with environments
represented by MATLAB® or Simulink® models. You can evaluate algorithms,
experiment with hyperparameter settings, and monitor training progress. To improve
training performance, you can run simulations in parallel on the cloud, computer
clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB Parallel
Server™)

Through the ONNX™ model format, existing policies can be imported from deep
learning framewarks such as TensorFlow™ Keras and PyTorch (with Deep Learning
Toolbox™). You can generate optimized C, C++, and CUDA code to deploy trained
policies on microcontrollers and GPUs

The toolbox includes reference examples for using reinforcement learing to design
controllers for robotics and automated driving applications

Getting Started
Learn the basics of Reinforcement Learning Toolbox

MATLAB Environments
Model reinforcement leaming environment dynamics using MATLAB

Simulink Environments
Model reinforcement leamning environment dynamics using Simulink models

Policies and Value Functions
Define policy and value function representations, such as deep neural networks and Q tabl

Agents
Create and configure reinfercement leaming agents using common algorithms, such as SA

Training and Validation
Train and simulate reinforcement learing agents

Policy Deployment
Code generation and deployment of trained policies
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Reinforcement Learning Toolbox

New in R2019a

= Built-in and custom algorithms for reinforcement
learning

= Environment modeling in MATLAB and Simulink
= Deep Learning Toolbox support for designing policies

= Training acceleration through GPUs and cloud
resources

=  Deployment to embedded devices and production
systems

= Reference examples for getting started

4\ MathWorks:
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Reinforcement Learning Toolbox  weweraseer

Reinforcement Learning Toolbox

Design and train policies using reinforcement learning

§ Download a free trial

Reinforcement Leaming Toolbox™ provides functions and blocks for training policies
using reinforcement leaming algorithms including DQN, A2C, and DDPG. You can
use these policies to implement controllers and decision-making algorithms for
complex systems such as fobots and autonomous systems. You can implement the
policies using deep neural networks, polynomials, or look-up tables

The toolbox lets you train policies by enabling them to interact with environments
represented by MATLAB® or Simulink” models. You can evaluate aigorithms
experiment with hyperparameter settings, and monitor training progress. To improve
training performance, you can run simulations in parallel on the cloud, computer
clusters, and GPUs (with Parallel Computing Toolbox™ and MATLAB Paraliel
Server™)

Through the ONNX™ model format, existing policies can be imported from deep
learning frameworks such as TensorFlow™ Keras and PyTorch (with Deep Leaming
Tooloox™). You can generate optimized C, C++, and CUDA code to deploy trained
policies on microcontrollers and GPUs.

The toolbox includes reference examples for using reinforcement leaming to design

controllers for robotics and automated driving applications.

Training and Validation
Train and simulate reinforcement learning agents

Policy Deployment
Code generation and deployment of trained policies

3 Traischware &, Conta
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Questions?
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