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Abstract

The General Method of Moments (GMM) is an estimation technique which
can be used for variety of financial models. We use the CKLS class of interest
rate models to demonstrate how GMM works. We discuss the practical im-
plementation in MATLAB. We pay attention to exactly-identified versus over-
identified estimation, minimization of objective function and hypothesis testing
of the model. We then illustrate problem areas in implementation, specifically
the importance of the variance-covariance matrix estimator of moment functions.
Our technical note is supplemented with the MATLAB code of discussed topics.

1 Short-Term Interest Rate Stochastic Differential Equation

The dynamics of a short-term interest rate can be nested within the following stochastic differ-
ential equation (SDE):
dry = (o + Br)dt + or?dZy, (1)

where «, 3, 0, are model parameters, r; is the short-term interest rate and Z; is the standard
Brownian motion. CKLS [1] defines the parameter vector 6 = («, 3,02, 7).

The SDE (1) defines a broad class of interest rate processes which include many well-known
one-factor interest rate models. These models can be obtained from (1) by placing appropriate
restrictions on the parameters (see Table 1).

CKLS estimated nine different specifications of the interest rate process. In this paper, we
implement three of them. The implemented models are summarized in Table 1. Adding further
specifications is a routine task.

Name SDE Restrictions

CKLS  dry = (a+ fry)dt +or)/dZ;  (unrestricted)
CIR dry = (a + Br)dt + o\/ridZy v = 1
Vasicek dry = (a + Bry)dt + odZ; N =

S ol

Table 1: Implemented short-term interest rate processes. CIR and Vasicek are proba-
bly the most commonly used models among the models analyzed in the CKLS paper.

2 GMM Estimation of the Short-Term Interest Rate SDE

To estimate the parameters of the model, CKLS relied on the General Method of Moments
(GMM). We present basic ideas of this estimation technique in this section. Details can be
found in [2].
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2.1 Moment Conditions

To estimate parameters of a SDE using the GMM we have to discretize the SDE. CKLS applied
Euler discretization scheme on (1):

Tl — Tt = a+ Pre+ e, (2)
41 = O-er(()? ]-)7 (3)
where N(0,1) is a random shock with zero mean and unit variance. It does not have to be nec-

essarily drawn from the standard Gaussian distribution, although Euler discretization assumes
that.

From (3) we can immediately observe that

Eleid] = 0, (4)
Dlery1] = Eletyy] = o™ (5)

Employing the characteristics (4) and (5) and using the notion that the error term ;41 is
uncorrelated with the explanatory variable r; (orthogonality condition), CKLS derived a set of
four moment functions:
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The moment functions are constructed so that
E[f+(0)] = 0. (7)
Equations (7) are called moment conditions of moments E[f;(0)] in the GMM terminology. The

basic idea of GMM is to pick model parameters that “fit” these moment conditions in our data
set.

We could easily come up with additional moment conditions. For example, we restrict
that &, is not autocorrelated, i.e. Elei416¢] = 0.

2.2 Sample Moments

The corresponding sample moments are defined as

1 T
gr(0) = 7 £(0), 5)
t=1

where 7' is a number of available observations (sample size). Equations (8) are natural sample
counterparts of population moments E[f;(0)]. (The traditional notation used in statistics would
denote these estimates §(#). However using T" subscript is a widespread notation due to [2].)

We find it convenient to reparametrise (2) to keep the implementation code neat. Further,
to get the numerical results in accordance with the CKLS paper, we have to employ time step
At. Equations (2) and (3) turn into

riy1 = a+bry+epq1, 9)
eir1 = or VAIN(0, 1), (10)

where a = aAt and b = 1 + SAt. Then the sample moments look as follows:
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2.3 Objective Function

The GMM objective function is defined as
Jr = gp(0)Wrgr(0), (12)
where W is positive-definite weighting matrix. We find our parameter estimates by solving

0 = arg min Jr. (13)
0

We can see that the GMM is a minimum distance estimator. In other words, we are setting
the weighted sum of squared sample moments as close to zero as possible. As we know, their
population counterparts are constructed to be equal to zero. The weighting matrix tells us how
much attention to pay to each moment.

For the unrestricted (CKLS) model we have four moment conditions and four parameters.
We say that the CKLS model is exactly identified and we can pick an arbitrary positive-definite
Wr. We can set all sample moments equal exactly zero.

2.4 Optimal Weighting Matrix W

The CIR and Vasicek models have three parameters, these models are overidentified. It is not
possible (with probability one) to set all sample moment conditions equal to zero. To obtain
asymptotically efficient estimates we set

Wr = S_l, (14)

where S is an estimate of the spectral density matrix of population moment functions. This
choice of the weighting matrix secures the smallest asymptotic covariance matrix of the estimate
of . This is important result is due to Hansen [2]. We call this the efficient GMM.

The spectral density or long run covariance matrix is defined
o
S= > Elfi(0)fi_;0). (15)
j=—o00

The spectral density matrix allows for serial correlation and heteroskedasticity in the observa-
tions of the moments function. A popular consistent estimate of the spectral density matrix is
the Newey-West estimator [3]:

k .
~ -~ j -~ ~
S=5+> (1 - k‘+1) (Sj + 55), (16)

where

T
Si=75 > MO0

In case of overidentified models, GMM is a two stage estimator. We usually proceed in
the following way:

1. We minimize (12) using identity weighting matrix (Wp = I'). This means that we consider
all moments equally important. We plug estimated parameter vector 6 into (16) and
inverse to get Wr.

2. Again, we minimize (12), but this time using the Wy from the first step.



2.5 Testing the Significance of Individual Parameters

Under the efficient GMM (and under the exactly identified GMM), we have asymptotic normality
for the estimated parameters:

VT (6 - 0) -4 N(0, (d'S™1d) ™), (17)
where d is the Jacobian of the population moments vector E[f;(6)].

For constructing the test statistics, we substitute in the corresponding sample moments
and evaluate them at the estimated parameters. For S, we substitute in our estimate (16) of
the spectral density matrix, i.e. our weighting matrix Wp.2

For example, the estimate of the Jacobian matrix of the CKLS model based on the sample
moments (11) looks as follows:

T Sy 0 0
d(6) = L 23 (repr —a—bry) 23 (e —a—brre At S 202At S In(ry)r??
T S Sr? 0 0
23 (rew1 —a —br)ry 23(rep1 —a—bry)rd At r?vﬂ 202 At 2111(7“,5)7“1527+1

(18)

2.6 Overall Test of Model Specification (Model Adequacy)

If the model is overidentified, GMM offers an overall test of the model by testing whether the
“extra” sample moments are sufficiently close to zero relative to their distribution.

The test statistic is asymptotically x? distributed:
5 4 A A d
T x Jr(0) =T x gp(0)Wr(0)gr(0) == Xin_p, (19)
where m is a number of moment conditions and p is a number of parameters.

If the test statistic rejects, then the underlying model that generated the system of moment
conditions is declared invalid.

3 MATLAB Implementation

The estimation routine is executed by running the RunEstimation.m (uses GMMestimation.m,
GMMobjective.m, GMMweightsNW.m and MomentsJacobia.m). See code comments for details.
The results are displayed in the MATLAB’s command window. We rely on fminsearch routine
when minimizing the objective function.

The Treasury bill yield data used by CKLS are one-month yields from the Center for
Research in Security Prices (CRSP). The data are monthly and cover period from June 1964 to
December 1989. The data set is saved in ckls.dat.

4 Importance of the Spectral Density Matrix Estimation

One of the main results of CKLS is concerned with the value of y. They showed that the value
of v is the most important feature differentiating interest rate models. Models which assume
v < 1, e.g. CIR and Vasicek, are rejected by the overall x? test of model adequacy. And those
which assume v > 1 are not rejected.

?In case of the the exactly identified model (CKLS), we still calculate the spectral density matrix and do the
inference.



4.1 Spectral Density Matrix

By running the estimation routine with different number of lags (differnet k) used in the spectral
density matrix estimation (16), we can deduce that CKLS used an ordinary sample covariance
matrix in their inference (k = 0).

By relying on the ordinary sample covariance matrix, they implicitly assume that the
moment functions can be considered as independent identically distributed variables.

4.2 Spectral Density Matrix for the CIR Model

Table 2 reports sample autocorrelations of the four moment functions for the CIR model. The
autocorrelations of the second and the fourth moment functions are obviously significantly dif-
ferent from zero.

lag autocorrelation of gr(6)
1 0.04 0.18 -0.01 0.13
2 |-0.06 0.15 -0.09 0.11
3 |-0.10 0.16 -0.09 0.09
4 1-0.06 0.12 -0.08 0.07
5 |-0.01 0.05 -0.03 0.02

Table 2: This table reports sample autocorrelations (first five lags) of the four moment
functions for the CIR model.

Thus we should use e.g. the Newey-West estimator (16) of the spectral density matrix S.
If we do so, and set the number of lags of the Newey-West estimator greater or equal to 12, we no
longer can reject the CIR model on the 5% significance level. The results are reported in Table 3.
Also note that the parameter estimates differ considerably, which questions the robustness of

#lags ‘ Q I6] o2 x>  p-value
0 0.0190 -0.2281 0.0073 5.82 0.0158
12 0.0328 -0.5145 0.0057 3.73 0.0533

Table 3: This table reports GMM estimation results for the CIR model when using
different number of lags in the Newey-West estimator of the spectral density matrix.
First row reports results with zero lags in the Newey-West estimator, i.e. results
obtained with an ordinary sample covariance matrix.

the GMM for the CIR model estimation. Qualitatively similar results can be obtained for the
Vasicek model.

4.3 GMM versus Maximum Likelihood for the CIR Model

We will compare the GMM to the Maximum Likelihood (ML). The transition density function
has a closed form solution for the CIR model and thus the ML estimator is available.

For easily noticeable comparison, we find it convenient to rewrite the CIR model into the
following form:
dry = XNp — r¢)dt + \/riodWy, (20)

where interest rate r, moves in the direction of its mean u at speed A. We get back to the former
notation by setting o = Ay and § = —A.



The estimation results of the ML versus the GMM are reported in Table 4. It is striking
that the 12-lags Newey-West GMM estimate of the drift (A, i) is much closer to the ML estimate
compared to the GMM estimate without using the Newey-West. This result emphasizes the
importance of the optimal weighting matrix estimation.

Method #lags ‘ A 7 o
GMM 0 0.228 0.083 0.086
GMM 12 0.515 0.064 0.075

ML 0.599 0.069 0.098

Table 4: This table reports the GMM versus the ML estimation results for the CIR
model. The sample mean of interest rate time series is equal to 0.067.

Conclusion

In this technical note we have outlined, how to implement the General Method of Moments
estimator for one-factor interest rate process. We have demonstrated that one should pay close
attention to the weighting matrix estimation.
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