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Abstract

This paper is devoted to practical utilization of Principal Component Analysis
(PCA) and its extension Independent Component Analysis (ICA). Our inten-
sion is to demonstrate different applications of the above mentioned methods in
biomedical image and signal processing. The concept of ICA in terms of blind
source separation is illustrated on EEG signals, whereas the approach of sparse
coding is explained using fMRI images.

1 Introduction

Both Principal (PCA) and Independent Component analysis (ICA) are transformations that
rely on statistics of the given data set. PCA is based on the information given by the second
order statistics, whereas ICA goes up to high order statistics. Therefore the result obtained by
ICA is assumed to be more meaningful than the one gained by PCA. However ICA better works
on the data that have been already preprocessed by PCA. Thus ICA is often perceived as an
extension of PCA. PCA and especially ICA have recently become popular tools in various fields,
e.g. blind source separation, feature extraction, telecommunication, finance, text document
analysis, seismic monitoring and many others. Two different approaches applied on EEG signals
and images will be considered in this paper. All successive ICA experiments were designed in
MATLAB environment using FastICA package proposed by Aapo Hyvärinen et al.

2 Principle of Independent Component Analysis

For better understanding of how ICA works consider the following problem. Imagine two or
more people talking at the same time. Let us denote their speech as sources s. Furthermore let
us record the mixtures x of their speech by appropriate number of microphones. This may be
mathematically formulated as

x = As (1)

where the elements aij of the matrix A are unknown mixing factors [2, 4].

Now the task is to find the original sources (independent components) with no prior
information about the mixing matrix A. ICA is a transformation that enables us to find such
sources. Herein it has to be stated that beside other limitations ICA does not reflect time
delays that occur in the signal. Thus ICA is not suitable for speech. However due to favourable
properties of biomedical signals it seems to be promising tool for data analysis in radiology and
other related fields.

In order to further simplify the noise-free model of ICA assume that the number of sources
equals the number of observed mixtures. Therefore in such case the gathered mixing matrix
A is always squared. Consequently it can be shown that the matrix A is invertible and the
inverse matrix - unmixing matrix W may be computed. Thus with the knowledge of matrix A
respectively W the sources can be computed as follows

s = Wx (2)
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Figure 1: The original sources are depicted in the left column, their random linear mixtures in
the middle, the obtained sources via ICA in the right column

Likewise other methods ICA embodies some inconveniences as well. Firstly the variances
- powers of the sources can not be identified, since multiplying certain column of the matrix A
by any scalar α can be always cancelled by dividing the appropriate column by the same scalar
α. Secondly another problem arises because of the natural property of matrix computation -
permutation. Thus it is impossible to determine the sequence of sources. Last but not least it
should be remarked that ICA operates only with sources that posses non-gaussian distribution.
Optionally only one source having gaussian distribution is allowed [2]. The illustration of ICA
model on artificial signals is depicted Figure 1.

3 Whitening

When estimating the ICA model the transformation called whitening is often employed. For
better illustration suppose a random vector z that posses following property

E{zizj} = δij (3)

In other words the Eq. (3) limits the elements of vector z to be uncorrelated and of unit variance.
It may be generalized that any vector z that posses the above mentioned properties is called
white (sphered) [2]. Now let us find a linear transformation V that projects random vector x
into whitened vector z

z = Vx (4)

Such transformation may be estimated via PCA due to the uncorrelatedness property of vector
z. Thus PCA is often utilized in ICA as a preprocessing step. The outline is as follows. First
the input data has to be centred. This is achieved by subtracting the sample mean value
from given data set. Next the correlation/covarinace matrix Cxx is evaluated and its eigen
decomposition Cxx = EDET is performed. Consequently the whitening matrix V is designed
as V = ED−1/2ET by simply extracting the square root of each element of D. Now the set of
x can be whitened as

z = Vx = VÃs (5)

However whitening (sphering) still does not give us independent components. When transform-
ing the gathered data z by any orthogonal matrix M the obtained vector y = Mz is white as
well. Thus whitening is not sufficient operation for estimating the independent components. In
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Figure 2: Whitening presenting (a) the joint distribution of the independent components s1 and
s2 with uniform distributions, (b) the joint distribution of the observed mixtures x1 and x2,
and (c) the joint distribution of the whitened mixtures z1 and z2

other words it can not be said if the independent components are addressed by z or y. Never-
theless whitening is still very important step when preprocessing the data. It limits the space
of mixing matrices to the orthogonal ones. The effect of whitening is illustrated in Figure 2.

The last step when performing ICA is choice of the matrix that is already assumed to be
orthogonal. This choice is done by searching for a matrix B that maximizes some given measure
of non-gaussianity of the sources s ≈ Bz.

4 EEG Signal Analysis

It is well known that the activity of active nerve cells in the brain produces current that may
be detected on the scalp using electrodes. The obtained signals are then traced in order to
obtain electroencephalography (EEG) recording. However EEG recording reveals number of
inconveniences. Briefly, the line noise at 50Hz plus another contaminations (artifacts) caused
by factors such as eye movements, blinks, cardiac signals and muscle noise [3]. In this section
the effective de-noising and possible artifacts rejecting will be shown.

4.1 De-noising

In our attempt EEG signals obtained from 19 channels were sampled at rate of 200Hz. Further-
more stop band filtering (because of the electricity supply at 50Hz) was performed in order to
denoise the signals. For such purposes MATLAB function fir1 [y(m) =

∑M
k=0 bkx

(m−k)] was
implemented. The original and filtered EEG signals are depicted in Figure 3. Consequently the
stop band filtered EEG signals were used as an input for ICA.

4.2 Independent Component Analysis

Two basic assumption about EEG signals have to be taken into account in order to proceed ICA.
Firstly it is supposed that the data gathered from sensors (electrodes) are linear sums of signals
evoked by spatially distributed sources in the brain. Secondly due to the nature of EEG signals
the time delays are omitted. When considering the general model of ICA each EEG signal
may be perceived as one observation xi. Furthermore the matrix x of such observations may
be designed by simply taking each observation xi as one row. The sources are then evaluated
using the Eq. (2) and their biological feasibility is analyzed. Consequently sources that reveal
the artifacts are substituted by zero vectors and the inverse ICA is proceeded in order to obtain
corrected EEG recording.



21 21.5 22 22.5 23

5

10

15

20

25

30

35

40

45

50

55

(a) OBSERVED EEG SIGNAL

21 21.5 22 22.5 23

1

2

3

4

5

6

7

8

9

(b) DENOISED EEG SIGNAL

50 100 150 200 250 300 350 400 450

(c) ICA RESULTS

Figure 3: EEG Signals processing presenting (a) original signals sampled at rate of 200Hz,
(b) signals obtained after the stop band filtering, and (c) signals (sources) obtained by ICA

5 ICA in Image Processing

So far we have concerned ourselves by application of ICA in terms of blind source separation.
In this section utilization in image processing will be explained [1, 5]. The main concept of
ICA applied to images insists on the idea that each image (subimage) may be perceived as
linear superposition of features ai(x, y) weighted by coefficients si. In case of ICA, features
are represented by columns of mixing matrix A and si are elements of appropriate sources. In
addition ICA features are localized and oriented and sensitive to lines and edges of varying
thickness of images (see Figures 4 and 5). Furthermore the sparsity of ICA coefficients should
be pointed out. It is expected that suitable soft-thresholding on the ICA coefficients leads to
efficient reducing of Gaussian noise [1].

Figure 4: The set of eigen images extracted
from fMRI scan of a brain tissue

Figure 5: The basis vectors of fMRI scans
gained by Fast ICA algorithm



6 Conclusion

In preceding sections multiple applications of ICA/PCA were outlined. It was also shown how
much of the hidden information could be detected using ICA in consequence of PCA. Our future
interest is to focus on the transformed data provided by ICA/PCA in order to avoid redundant
information. Briefly, effective rejecting of artifacts from EEG signals and further de-noising of
biomedical images.
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