
COMPETITIVE DIFFERENTIAL EVOLUTION AND

GENETIC ALGORITHM IN GA-DS TOOLBOX

J. Tvrd́ık

University of Ostrava

1 Introduction

The global optimization problem with box constrains is formed as follows: for a given objective
function f : D → R, D =

∏d
i=1[ai, bi], ai < bi, i = 1, 2, . . . , d the point x∗ is to be found

such that x∗ = arg minx∈D f(x). The point x∗ is called the global minimum point and D is the
search space.

The problem of the global optimization is hard and plenty of stochastic algorithms were
proposed for its solution, see e.g. [1], [7]. The authors of many such stochastic algorithms claim
the efficiency and the reliability of searching for the global minimum. The reliability means
that the point with minimal function value found in the search process is sufficiently close to
the global minimum point and the efficiency means that the algorithm finds a point sufficiently
close to the global minimum point at reasonable time. However, the efficiency and the reliability
of many stochastic algorithms is strongly dependent on the values of control parameters. Self-
adaptive algorithms reliable enough at reasonable time-consumption without the necessity of
fine tuning their input parameters have been studied in recent years, e.g. Winter et al. [12]
proposed a flexible evolutionary agent for real-coded genetic algorithms. The proposal of an
adaptive generator of robust algorithms is described in Deb [2]. Theoretical analysis done by
Wolpert and Macready [13] implies, that any search algorithm cannot outperform the others for
all objective functions. In spite of this fact, there is empirical evidence, that some algorithms
can outperform others for relatively wide class of problems both in the convergence rate and in
the reliability of finding the global minimum point. Thus, the way to the adaptive algorithms
leads rather trough the experimental research than trough purely theoretical approach.

2 Differential Evolution and its Control Parameters

The differential evolution (DE) is an evolutionary heuristic search for the global minimum in
box-constrained search space. It was proposed by Storn and Price [8] in nineties. The differential
evolution has become one of the most popular algorithms for the continuous global optimization
problems in last decade [3].

Basic idea of DE is very simple. The differential evolution works with two population P
(old generation) and Q (new generation) of the same size N . A new trial point y is composed
of the current point xi of old generation and the point u obtained by using mutation. If
f(y) < f(xi) the point y is inserted into the new generation Q instead of xi. After completion
of the new generation Q the old generation P is replaced by Q and the search continues until
stopping condition is fulfilled. The differential evolution in pseudo-code is written as Algorithm 1
in more detail.

There are several variants how to generate the mutant point u. Most frequently used one
(called DERAND in this text) generates the point u by adding the weighted difference of two
points

u = r1 + F (r2 − r3) , (1)

where r1, r2 and r3 are three distinct points taken randomly from P (not coinciding with the
current xi) and F > 0 is an input parameter. Another variant called DEBEST generates the

point u according to formula

u = xmin + F (r1 + r2 − r3 − r4) , (2)

where r1, r2, r3, r4 are four distinct points taken randomly from P (not coinciding with the
current xi), xmin is the point of P with minimal function value, and F > 0 is an input parameter.

Algorithm 1. Differential evolution
1 generate P = (x1,x2, . . . , xN); (N points in D)
2 repeat
3 for i := 1 to N do
4 compute a mutant vector u;
5 create y by the crossover of u and xi;
6 if f(y) < f(xi) then insert y into Q
7 else insert xi into Q
8 endif;
9 endfor;
10 P := Q;
11 until stopping condition;

The elements yj , j = 1, 2. . . . , d of trial point y are built up by the crossover of its parents
xi and u using the following rule

yj =
{

uj if Uj ≤ C or j = l
xij if Uj > C and j 6= l ,

(3)

where l is a randomly chosen integer from {1, 2, . . . , d}, U1, U2, . . . , Ud are independent random
variables uniformly distributed in [0, 1), and C ∈ [0, 1] is an input parameter influencing the
number of elements to be exchanged by crossover. Eq. (3) ensures that at least one element of
xi is changed even if C = 0.

The main advantage of the differential evolution consist in its simplicity. It has only three
input parameters controlling the search process, namely the size of population N , the mutation
parameter F and the crossover parameter C. However, it is also known that the efficiency of
the search for the global minimum is very sensitive to the setting the control parameters and
it becomes the disadvantage of DE in some global optimization problems. The recommended
values are F = 0.8 and C = 0.5, but even Storn and Price in their principal paper [8] use
0.5 ≤ F ≤ 1 and 0 ≤ C ≤ 1 depending on the results of preliminary tuning. They also set
the size of population less than the recommended N = 10 d in many of their test tasks. Many
papers deal with the setting of the control parameters for differential evolution. Recent state
of adaptive parameter control in differential evolution is summarized by Liu and Lampinen [4].
The setting of the control parameters can be made self-adaptive trough the implementation of
a competition into the algorithm [11]. This idea is similar to the competition of local-search
heuristics in evolutionary algorithm [9] or in controlled random search [10].

Let us have H settings (different values of F and C used in the statements on line 4 and 5
of Algorithm 1) and choose among them at random with the probability qh, h = 1, 2, . . . , H.
The probabilities can be changed according to the success rate of the setting in preceding steps of
search process. The h-th setting is successful if it generates such a trial point y that f(y) < f(xi).
When nh is the current number of the h-th setting successes, the probability qh can be evaluated
simply as the relative frequency

qh =
nh + n0∑H

j=1(nj + n0)
, (4)

where n0 > 0 is a constant. The setting of n0 ≥ 1 prevents a dramatic change in qh by one
random successful use of the h-th parameter setting. In order to avoid the degeneration of

process the current values of qh are reset to their starting values (qh = 1/H) if any probability
qh decreases bellow a given limit δ > 0.

It is supposed that such a competition of different settings will prefer successful settings.
The competition will serve as an self-adaptive mechanism of setting control parameter appro-
priate to the problem actually solved.

3 Experiments and Results

The algorithms were tested on the benchmark of six functions commonly used in experimental
tests. Two of them are unimodal (first De Jong, Rosenbrock), the other test functions are
multimodal. Definitions of the test functions can be found e.g. in [8] and they are also described
in Appendix as well as the definition of the search search space for all the functions. The
search spaces D in all test tasks were symmetric and with the same interval in each dimension,
ai = −bi, bi = bj i, j = 1, 2, . . . , d.

The test were preformed for all the functions at four levels of dimension d of search spaces,
namely d = 2, d = 5, d = 10 and d = 30. One hundred of repeated runs were carried out for
each function and level of d.

The ga function from Genetic Algorithm and Direct Search Toolbox [5] for the global
minimization were compared differential evolution in numerical tests. The calling statement of
ga function was the same for all the parameter settings tested in ga:
[xstar,fnstar,reason,output]=ga(fhand,d,[],[],[],[],a,b,[],options);
Four variants of settings for GA were tested. The sequence of these settings in the tests was as
follows:

• GA1 – as many default options as possible for the box-constrained problems
∗ initial population was generated in the whole search space D
options= gaoptimset(’PopInitRange’, [a;b]) {default PopInitRange=[0;1]}
∗ the mutation for the box-constrained problems was set up
options=gaoptimset(options,’MutationFcn’,@mutationadaptfeasible)

• GA2 – due to the poor reliability of the search by GA1, some additional options were
changed in order to make the results more reliable:
∗ population size was increased for higher search space dimensions
options= gaoptimset(options,’PopulationSize’,10*d)
{default PopulationSize=20}
∗ maximum number of generation was increased
options= gaoptimset(options,’Generations’, 10000) {default Generations=100}
∗ more benevolent stopping condition
options= gaoptimset(options,’TolFun’,1e-12) {default TolFun=1e-6}

• GA3 – comparing with GA2 some options were changed in order to get time demand
comparable with standard DE
∗ size of the population modified
options= gaoptimset(options,’PopulationSize’, max([20;5*d]))
∗ number of surviving parent-population individuals increased for higher d
options= gaoptimset(options,’EliteCount’, d) {default EliteCount=2}
∗ slightly more strict stopping condition
options= gaoptimset(options,’TolFun’,1e-10)

• GA3hyb – the same setting as in GA3, but the search process continues by the local
constrained optimizer after ga terminates
options= gaoptimset(options,’HybridFcn’,@fmincon)

The results of these setting of ga were compared with two variants differential evolution:

• DERAND – the standard DE with recommended values F = 0.8 and C = 0.5, the mutant
vector u generated according to (1),

• DEBR18 – 18 competing control-parameter settings, the mutant vector u is generated
according to (1) in nine settings and according to (2) in remaining nine settings. Combi-
nations of F values (F = 0.5, F = 0.8, F = 1) and C values (C = 0, C = 0.5, C = 1)
creates nine parameter settings for each variant of the mutant vector u [11].

Population size for both variants of DE was set to N = max(20, 2 d), parameters for competition
control in DEBR18 were set to n0 = 2, and δ = 1/(5H) in all the test tasks. The search for
the global minimum was stopped if fmax − fmin < 1E − 07 or the number of objective function
evaluations exceeds the input upper limit 20000 d.

Table 1: Comparison of DE and best ga setting

Algorithm DERB18 DERAND GA3hyb
Function d λf λm ne R λf λm rne R λf λm rne R

ackley 2 7.1 6.8 2409 100 7.3 6.9 -2 100 6.2 5.9 -7 95
dejong1 2 8.4 3.7 1162 100 8.4 3.7 -1 100 11.0 8.1 29 100
griewangk 2 8.5 3.5 2876 100 6.8 2.7 25 78 4.5 1.8 -39 53
rastrig 2 8.5 4.9 1778 100 8.5 4.9 -2 99 9.0 5.7 18 97
rosen 2 8.3 4.6 1956 100 8.3 4.7 105 100 7.5 3.7 142 100
schwefel 2 7.5 5.5 1640 100 7.5 5.5 -3 100 4.6 3.1 12 57

ackley 5 6.4 6.2 6401 100 6.3 6.1 1 99 4.1 3.8 -24 67
dejong1 5 7.2 3.2 3176 100 7.1 3.2 -3 100 11.0 8.1 13 100
griewangk 5 7.2 2.5 8686 100 5.2 1.7 14 70 3.7 1.2 -61 53
rastrig 5 7.2 4.4 4989 100 6.7 4.1 16 95 7.5 5.0 0 92
rosen 5 6.9 4.2 6256 100 7.2 4.4 528 100 6.4 3.3 414 89
schwefel 5 7.4 5.4 4564 98 7.4 5.4 -3 98 1.5 0.5 -15 9

ackley 10 6.1 5.9 13569 100 5.9 5.7 14 99 3.2 2.9 -9 52
dejong1 10 6.7 3.0 6973 100 6.5 3.0 6 100 11.0 8.1 39 100
griewangk 10 6.6 2.1 13153 99 5.3 1.6 18 78 4.0 1.2 -40 68
rastrig 10 6.7 4.2 10711 100 5.3 3.4 104 82 6.3 4.3 26 82
rosen 10 6.3 4.0 20524 100 6.7 4.3 429 100 5.8 3.1 10 84
schwefel 10 7.4 5.4 9964 99 7.3 5.2 9 96 1.4 0.3 1 6

ackley 30 5.9 5.8 142208 100 5.6 5.6 164 100 0.2 0.1 -78 2
dejong1 30 6.4 3.0 78664 100 6.1 2.9 141 100 11.0 8.1 -51 100
griewangk 30 6.4 1.6 103095 100 6.0 1.5 174 100 3.4 0.6 -84 51
rastrig 30 6.4 4.1 110071 100 0.0 0.0 445 0 1.7 1.2 -51 23
rosen 30 6.3 4.3 381972 100 0.0 0.0 57 0 0.2 0.1 -87 4
schwefel 30 7.5 5.4 108050 100 7.5 5.4 206 100 1.0 0.0 -65 0

The accuracy of the result obtained by the search for the global minimum was evaluated
according to the number of duplicated digits when compared with the correct certified result.
The number of duplicated digits λ can be calculated via log relative error [6]:

• If c 6= 0, the λ is evaluated as

λ =

0 if |m−c|
|c| ≥ 1

11 if |m−c|
|c| < 1× 10−11

− log10

(|m−c|
|c|

)
otherwise ,

(5)

where c denotes the right certified value and m denotes the value obtained by the search.

• If c = 0, the λ is evaluated as

λ =

0 if |m| ≥ 1
11 if |m| < 1× 10−11

− log10 (| m |) otherwise .
(6)

Two values of the number of duplicated digits are reported in the results: λf for the function
value, and λm, which is minimal λ for the global minimum point (x1, x2, . . . , xd) found by the
search.

The results of the comparison are presented in Table 1 and 2 . The time consumption
is expressed as the average number (ne) of the objective function evaluations needed to reach
the stopping condition. Columns of Table 1 (and also Table 2) denoted rne contain the relative
change of ne in percents when compared with DEBR18 in Table 1. Therefore, the negative
values of rne mean less time consumption with respect to DEBR18, the positive values bigger
one, the value rne = 100 means that ne is twice bigger, the value rne = −50 means half ne
in comparison with DEBR18. The reliability of search is reported in the columns λf and λm,
where are the average values of one hundred runs, and also in the columns denoted R, where
the percentage of runs with λf > 4 is given.

4 Conclusions

The results demonstrate the disadvantage of real-coded genetic algorithm implemented in ga
function. The search for the global minimum is strongly dependent on the control-parameter
setting. It is not easy to select the proper set up for the solved problem. There are more than
ten control parameters (options) of ga influencing the search for the global minimum in the
box-constrained problem and it is difficult to guess the influence of their changes on the search
process in different global optimization tasks.

As it is clear from Table 2, the performance of the default setting (GA1) is very poor, very
early premature convergence occurs in all the tasks with higher dimension of the search space,
and even in the tasks with d = 2 the premature convergence was very frequent. The second
parameter setting (GA2) brought slight (but insufficient) improvement in the reliability for the
tasks with low dimension. The early premature convergence persists in all the tasks with d = 30
and the premature convergence also remains in most tasks of d = 5 and d = 10, even if the time
demand was significantly higher in comparison with DEBR18 in Table 1, see all the tasks with
d = 10. The third setting (GA3) decreased the time demand but also decreased the reliability
comparing with GA2.

The most reliable results of ga among the tested parameter settings are the results obtained
by the hybrid procedure GA3hyb, see Table 1, but the reliability of the search for the global
minimum achieved by this setting is also not satisfactory. Full reliability (R = 100) was got
only in the easiest tasks of first DeJong function (unimodal convex function, the search for the
minimum is easy for each algorithm) and in the Rosenbrock function with d = 2. Moreover, it
is surprising, that the full reliability was not achieved by GA3hyb in the other test tasks using
Rosenbrock function, although this function is unimodal. The best parameter setting GA3hyb
of ga found in the tests does not outperform nor standard DE in most tasks.

Table 2: Results for GA1, GA2 and GA3 and comparison of ne with DEBR18

Algorithm GA1 GA2 GA3
Function d λf λm ne R λf λm rne R λf λm rne R

ackley 2 1.8 1.7 -51 0 3.6 3.3 14 12 3.2 2.9 -7 3
dejong1 2 4.5 2.3 -12 67 7.0 3.6 74 100 5.7 2.9 28 100
griewangk 2 2.3 0.7 -63 10 2.7 0.9 -24 26 2.7 0.9 -36 24
rastrig 2 2.5 2.4 -34 5 5.5 4.0 44 100 4.9 3.6 19 88
rosen 2 1.5 0.5 -40 3 3.8 1.6 378 33 2.3 0.9 142 4
schwefel 2 2.3 1.4 -36 9 4.4 2.6 44 62 3.6 2.1 11 59

ackley 5 0.4 0.4 -79 0 3.5 3.2 87 2 2.1 1.8 -27 0
dejong1 5 2.0 1.1 -62 1 6.2 3.2 159 100 4.6 2.4 12 81
griewangk 5 1.4 0.2 -88 0 2.8 0.8 -1 36 2.5 0.6 -61 9
rastrig 5 0.6 1.1 -65 0 5.1 3.8 120 98 3.5 2.9 1 31
rosen 5 0.2 0.1 -75 0 1.8 0.7 3417 0 0.7 0.2 439 0
schwefel 5 1.0 0.2 -69 0 2.3 1.0 94 26 1.6 0.5 -17 16

ackley 10 0.0 0.0 -90 0 3.3 3.1 149 0 1.5 1.3 -11 0
dejong1 10 0.9 0.6 -76 0 5.2 2.8 219 98 3.8 2.1 38 31
griewangk 10 1.1 0.0 -92 0 3.0 0.8 53 37 2.1 0.4 -44 0
rastrig 10 0.0 0.1 -83 0 4.4 3.5 185 76 2.6 2.4 32 3
rosen 10 0.0 0.0 -91 0 0.7 0.2 2199 0 0.1 0.0 27 0
schwefel 10 0.7 0.0 -83 0 1.3 0.1 139 3 1.1 0.0 2 1

ackley 30 0.0 0.0 -99 0 1.3 1.3 -29 0 0.1 0.0 -77 0
dejong1 30 0.0 0.0 -98 0 2.7 1.7 21 2 1.5 1.0 -50 0
griewangk 30 0.8 0.0 -99 0 1.7 0.1 -61 0 1.3 0.0 -87 0
rastrig 30 0.0 0.0 -99 0 1.8 2.3 22 0 0.3 0.5 -51 0
rosen 30 0.0 0.0 -99 0 0.0 0.0 -67 0 0.0 0.0 -88 0
schwefel 30 0.3 0.0 -98 0 1.2 0.0 -18 0 0.9 0.0 -67 0

The DEBR18 algorithm was the most reliable among all the tested algorithms and it is also
faster when comparing with the standard DERAND and four ga parameter settings, DEBR18
is outperformed in the convergence rate by GA3hyb only in one task (Dejong1, d = 30), where
both the DEBR18 and the GA3hyb achieve the full reliability.

The competitive setting of the control parameters F and C in DE proposed in [11]
proved to be an useful tool for self-adaptation of differential evolution, which can help to
solve the box-constrained global optimization tasks without necessity of fine parameter tun-
ing. The source code of the DEBR18 algorithm in Matlab is available at author’s web site
(http://albert.osu.cz/tvrdik).

References

[1] Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New
York (1996)

[2] Deb, K.: A population-based algorithm-generator for real parameter optimization. Soft
Computing 9 (2005) 236 – 253

[3] Lampinen, J.: A Bibliography of Differential Evolution Algorithm. Technical Re-
port. Lappeenranta University of Technology, Department of Information Technology.
http://www.lut.fi/∼jlampine/debiblio.htm (2002)

[4] Liu, J., Lampinen, J.: A Fuzzy Adaptive Differential Evolution Algortithm. Soft Computing
9 (2005) 448 – 462

[5] MATLAB, version 7 (R2006a), The MathWorks, Inc. (2006)
[6] McCullough, B.D.,Wilson, B.: On the accuracy of statistical procedures in Microsoft Excel

2003. Comput. Statist. and Data Anal. 49 (2005) 1244 – 1252
[7] Spall, J. C.: Introduction to Stochastic Search and Optimization, Wiley-Intersience (2003)
[8] Storn, R., Price, K.: Differential evolution - a Simple and Efficient Heuristic for Global

Optimization over Continuous Spaces. J. Global Optimization 11 (1997) 341 – 359
[9] Tvrd́ık, J., Mǐśık, L., Křivý, I.: Competing Heuristics in Evolutionary Algorithms. 2nd

Euro-ISCI, Intelligent Technologies - Theory and Applications (Sinčák P. et al. eds.), IOS
Press, Amsterdam (2002) 159 – 165

[10] Tvrd́ık, J.: Generalized controlled random search and competing heuristics. MENDEL
2004, 10th International Conference on Soft Computing, (Matoušek R. and Ošmera P.
eds). University of Technology, Brno (2004) 228 – 233

[11] Tvrd́ık, J.: Competitive Differential Evolution. MENDEL 2006 , 12th International Con-
ference on Soft Computing (Matoušek R. and Ošmera P. eds). University of Technology,
Brno (2006) 7 – 12

[12] Winter, G., Galvan, B., Alonso, S., Gonzales, B., Jimenez, J. I., Greimer, D.: A flexible
evolutionary agent: cooperation and competition among real-coded evolutionary operators.
Soft Computing 9 (2005) 299 – 323

[13] Wolpert, D. H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE Trans-
actions on Evolutionary Computation 1 (1997) 67 – 82

Author’s address:
Department of Computer Science, University of Ostrava, 30.dubna 22, 701 03 Ostrava, tvrdik@osu.cz

The work was supported by the grant 201/05/0284 of the Czech Grant Agency and by the research
scheme MSM 6198898701 of the Institute for Research and Applications of Fuzzy Modeling, University
of Ostrava.

Appendix – Test functions

• Ackley’s function

f(x) = −20 exp

−0.02

√√√√1
d

d∑

i=1

x2
i

− exp

(
1
d

d∑

i=1

cos 2πxi

)
+ 20 + exp(1)

xi ∈ [−30, 30], x∗ = (0, 0, . . . , 0), f(x∗) = 0

• First De Jong’s function

f(x) =
d∑

i=1

x2
i

xi ∈ [−5.12, 5.12], x∗ = (0, 0, . . . , 0), f(x∗) = 0

• Griewangk’s function

f(x) =
d∑

i=1

xi
2

4000
−

d∏

i=1

cos
(

xi√
i

)
+ 1

xi ∈ [−400, 400], x∗ = (0, 0, . . . , 0), f(x∗) = 0

• Rastrigin’s function

f(x) = 10d +
d∑

i=1

[xi
2 − 10 cos(2πxi)]

xi ∈ [−5.12, 5.12], x∗ = (0, 0, . . . , 0), f(x∗) = 0

• Rosenbrock’s function (banana valley)

f(x) =
d−1∑

i=1

[
100(x2

i − xi+1)2 + (1− xi)2
]

xi ∈ [−2.048, 2.048], x∗ = (1, 1, . . . , 1), f(x∗) = 0

• Schwefel’s function

f(x) =
d∑

i=1

xi sin(
√
| xi |)

xi ∈ [−500, 500], x∗ = (s, s, . . . , s), s = 420.97, f(x∗) = −418.9829d

