
DISTRIBUTED COMPUTING IN DATA PROCESSING

A. Pavelka and A. Procházka
Institute of Chemical Technology, Department of Computing and Control Engineering

Abstract

The paper describes basic operations associated with the use of the distributed
computing toolbox and its application for processing of extensive and complex
mathematical problems using the computer network and the set of computers
for parallel processing of separate components of the whole algorithm.

1 Introduction

There is a wide range of problems and applications calculation of which performed on a single
computer takes too much time. To speed up such calculations and effectively use all computer
power around it is suitable to use distributed computing. MATLAB offers one elegant internal
solution of this problem.

2 Principles

For time consuming problems we have possibility to separate the whole calculation into smaller
elements and process them separately. In the MATLAB environment we can provide it using the
Distributed Computing Toolbox (DCT). This system is important for communication between
the user’s computer and the calculation cluster created by the MATLAB Distributed Computing
Engine (DCE). The DCT and the MATLAB DCE enable us to coordinate and execute indepen-
dent MATLAB operations simultaneously on a cluster of computers, speeding up execution of
large MATLAB jobs [1, 2].

In the terminology of DCT and DCE the job represents some large operation that we need
to perform in the MATLAB session. A job is divided into small elements called tasks. Every
task is evaluated by a worker. A worker is a calculation session, it could be a single computer
or it is possible to have more workers on one computer. All jobs and tasks are managed by the
head node controlling computer called the job manager.

The optional job manager can run on any machine on the network. The job manager runs
jobs according to Fig. 1 in the order in which they are submitted, unless any jobs in its queue
are promoted, demoted, canceled, or destroyed.

Each worker receives a task of the running job from the job manager, executes the task,
returns the result to the job manager, and then receives another task. When all tasks for a
running job have been assigned to workers, the job manager starts running the next job with
the next available worker.

A MATLAB DCE setup usually includes many workers that can execute tasks simultane-
ously, speeding up execution of large MATLAB jobs. It is generally not important which worker
executes a specific task. Each worker evaluates tasks once a time, returning results to the job
manager. The job manager then returns results of all tasks in the job to the client session.



Client
Distributed
Computing

Toolbox

Client
Distributed
Computing

Toolbox

Worker
Distributed
Computing

Engine

Worker
Distributed
Computing

Engine

Worker
Distributed
Computing

Engine

Pending

Job
Job
Job

Running

Job
Job
Job

Queued

Job
Job
Job

Finished

Job
Job
Job

Job Manager

su
bm

it

createJob

getAllOutputArguments

getAllOutputArguments

Ta
sk

Task

Task

R
es

ul
ts

Results

Re
su

lts

cr
ea

te
Jo

b

Figure 1: The priciples and architecture of the MATLAB Distributed Computing Toolbox and
the Distributed Computing Engine

3 Programming Methods for Distributed Computing

A typical source code for the DCT must contain the following steps:

1. Find a Job Manager
2. Create a Job
3. Create Tasks
4. Submit a Job to the Job Queue in Job Manager
5. Retrieve the Jobs Results (wait until the job is finished)
6. Destroy the Job

The whole process can be illustrated by a simple example. Let’s have a measured data set
(values x and y) and model them by relation y = y0 (1 + (a − 1) ya−1

0 b x)1/(1−a) that describe
measured data analytically. The problem is in the design of algorithm for solution of the classical
problem of estimating suitable parameters for measured data and the selected model.

First of all we define the function. This function will be used for calculation of values y
from measured vales x using the searched parameters a and b.

1 function y = my_function(y0,a,b,x)
2 warning off
3 y = y0*(1+(a-1)*y0.^(a-1)*b*x).^(1/(1-a));

In the next step we define function that will represent one task of calculations. This
function my Task is the key function as it will be evaluated on workers, so it should be relatively
complicated and time consuming function. The selected example of raw calculation or so called
brutal force method is an ideal example for demonstration of DCT because it always leads to
the exact and perfect solution. But its biggest disadvantage is in the enormous time, that is
necessary to have for its calculation. In other words the parameters of my Task are two vectors
A and B, that represent range in which the unknown parameter will be searched by repeated
evaluation of my function. Outputs of the task function include the minimal error, parameters
corresponding with this minimal error, the whole error matrix and calculation time.



1 function [e_min,parameter_a,parameter_b,error,calculation_time] = my_Task(A,B)
2
3 %% Data load a definition
4 load my_data
5
6 x0 = x(1); x = x(2:end);
7 y0 = y(1); y = y(2:end);
8
9 %% Own Calculation
10 error = zeros(length(A),length(B));
11 tic
12 for i = 1:length(A)
13 for j = 1:length(B)
14 C = my_function(y0,A(i),B(j),x);
15 error(i,j) = sum(C-y).^2;
16 end
17 end
18 calculation_time = toc;
19
20 %% Error, Parameters and Limitation of Error
21 error(error>0.5) = nan;
22 e_min = min(error(:));
23 [xm,ym] = find(error==e_min);
24 parameter_a = A(xm(1));
25 parameter_b = B(ym(1));

The following script includes the main steps that are necessary to perform before calcu-
lations using the DCT and DCE. In the initial part of the script there are standard definitions
of parameters and clearing workspace. The most important part starts by the comment %%
Parameter of DCT on the line 18, it searches for the available job manager and creates the new
empty job in the founded job manager. The next lines shows important parameters that are
useful to always check and setup, it includes restarting MATLAB workers before evaluating job
tasks. Property FileDependencies gives us the opportunity to define a list of all the directories
and files that are needed for calculations. When this property is set to true or 1 directories
and files are zipped and sent to the workers. At the worker side, the data is unzipped, and the
entries defined in the property are added to the path of the MATLAB worker session. It is also
possible to setup own specific name of the job that later helps in the job identification.

1 %% Data load a definition
2 close all; clear all; clc;
3 load my_data
4
5 x0 = x(1); x = x(2:end);
6 y0 = y(1); y = y(2:end);
7
8 %% Parameter definition
9 A = 1.01:0.01:129; % range for parameter a
10 B = 0.01:0.01:128; % range for parameter b
11 k = 32; % number of intervals for separating of A
12
13 %% Check of the calculation start
14 disp([’The calculation matrix is ’,...
15 num2str(length(A)),’x’,num2str(length(B)),’.’])
16 disp([’ i.e. ’,num2str(length(A)*length(B)),’ combinations.’])
17
18 %% Parameter of DCT
19 jm = findResource(’jobmanager’);
20 job = createJob(jm);
21 set(job,’RestartWorker’,0);
22
23 dir_m = dir(’my_*.m’);
24 dir_mat = dir(’my_*.mat’);
25 dir_cell = struct2cell([dir_m; dir_mat]);
26 dir_cell = dir_cell(1,:);
27 set(job,’FileDependencies’,dir_cell)
28 set(job,’Name’,[’My Calculation - ’,getenv(’COMPUTERNAME’)]);
29
30 %% Own calculation
31 for i = 1:k
32 step = length(A)/k;
33 A_task = A(step*(i-1)+1:step*i);
34 createTask(job, @my_Task, 5, {A_task,B},’CaptureCommandWindowOutput’,1);
35 end
36 submit(job);
37 disp(’done’)



The final section of the script starting with comment %% Own calculation on the line
30 separates the wide range of parameter A into k smaller intervals. Function createTask
creates task to job that now represents the handle to the just creating job. This task will be
evaluating function my task with parameters (A task,B) expecting 5 output parameters and
during evaluation an output produced by function my task in the MATLAB Command Window
will be gathered. The line

createTask(job, @my_Task,5,{A_task,B},’CaptureCommandWindowOutput’,1);

is equal to

[e_min,parameter_a,parameter_b,error,calculation_time] = my_Task(A_task,B)

in the language of non-distributed programming, of course that this comparison does not in-
clude storing of output of the my Task function in the for - end cycle. The final command,
submit(job), sends the whole job into the job manager. After the evaluation of this script we
passed 4 of 6 steps needed for every MATLAB distributed calculation.

When the job is in state finished you can provide following commands in the MATLAB
Command Window to retrieve all data, save them and destorying (removing, cleaning) your
finished job from the job manager

data = getAllOutputArguments(job);

save data32 data

destroy(job)

The result processing must be done after retrieving and saving results. This processing is
usually not connected with the DCT or DCE and can be provided “off-line” (without presence
of job managers or workers). In the result processing we have to be very careful to the RAM
because sooner or later we create a large job with many tasks and the final output cell matrix
will exceed the computer memory limitations. To avoid this problem there exists a solution
providing saving results in every step and storing them on the safe place for example via FTP.
Aternativelly we have possibility to process results of every task directly from the job manager.
Those solutions will be described later.

From our code of the post-processing script we describe section 5 and 6 that is on lines
24–39 beginning with %% DCT Results and %% Minimal Error Search comments. The sec-
tion 5 extract some of resulting outputs from the cell matrix data that have been created by
getAllOutputArguments function. Section 6 directly selects desired error matrix with the low-
est error from cell matrix data. Finally the data variable is cleared. This way of handling
with the final cell matrix including calculated result is caused be the huge consumption of com-
puter memory. Totaly matrix of size 12 800 × 12 800 has been investigated i.e. 163 840 000
combinations of parameters a and b that has been evaluated1.

1 %% Data load a definition
2 close all; clear all; clc;
3 load my_data
4
5 x0 = x(1); x = x(2:end);
6 y0 = y(1); y = y(2:end);
7
8 %% Parameter definition
9 A = 1.01:0.01:129; % range for parameter a
10 B = 0.01:0.01:128; % range for parameter b
11
12 %% Input data
13 f1=figure;
14 plot(x,y,’b’,’LineWidth’,2)
15 grid on
16 xlabel(’values x’,’FontWeight’,’bold’)
17 ylabel(’values y’,’FontWeight’,’bold’)
18
19 %% Check of the calculation start
20 disp([’The calculation matrix is ’,...

1The size of results are following: data32.mat 46.7 MB, variable data 1 250 MB, variable ERROR 39.1 MB



21 num2str(length(A)),’x’,num2str(length(B)),’.’])
22 disp([’ i.e. ’,num2str(length(A)*length(B)),’ combinations.’])
23
24 %% DCT Results
25 load data32
26 for i=1:size(data,1)
27 disp([’Calculation cycle No: ’,num2str(i)]);
28 min_ERROR(i,1) = data{i,1};
29 parameter_a(i,1) = data{i,2};
30 parameter_b(i,1) = data{i,3};
31 calculation_time(i,1) = data{i,5};
32 end
33
34 %% Minimal Error Search
35 total_min = min(min_ERROR);
36 Task_ID = find(min_ERROR==min(min_ERROR));
37 ERROR=data{Task_ID,4};
38 [xm,ym] = find(ERROR==total_min);
39 clear data
40
41 step = length(A)/size(parameter_a,1);
42 A_task = A(step*(Task_ID-1)+1:step*Task_ID);
43 f2=figure;
44 [Bmesh,Amesh] = meshgrid(B,A_task);
45 meshc(Amesh,Bmesh,ERROR)
46 set(gcf,’Renderer’,’ZBuffer’)
47 hold on
48
49 % Minimal Value in 3D graph
50 plot3([parameter_a(Task_ID,1) parameter_a(Task_ID,1)],...
51 [parameter_b(Task_ID,1) parameter_b(Task_ID,1)],...
52 [min(ERROR(:)) max(ERROR(:))],’r-*’,’LineWidth’,2)
53 hold off
54 xlabel(’parameter a’,’FontWeight’,’bold’);
55 ylabel(’parameter b’,’FontWeight’,’bold’);
56 zlabel(’error’,’FontWeight’,’bold’)
57 print(f2,’-dpng’,’pic/error_surface32.png’);
58
59 figure(f1)
60 C = my_function(y0,parameter_a(Task_ID,1),parameter_b(Task_ID,1),x);
61 hold on
62 plot(x,C,’r’,’LineWidth’,2)
63 legend(’Real data’,’New Data’)
64 hold off
65 print(f1,’-dpng’,’pic/data.png’);
66
67
68 disp(’done’)

Figure 2: Real measured data and approxi-
mated data

Figure 3: Error surface with minimal error



4 Monitoring of Cluster Calculations

4.1 Third Party Monitoring Tools

When the job is submitted to the job manager you can close MATLAB session and without prob-
lem receive current job status or results later. Command jm = findResource(’jobmanager’);
is the most important one. After applying of getjm we receive structure array from which we
obtain any information that is in the job manager. For comfort job and tasks monitoring it is
suitable to use shared files in MATLAB Central File Exchange.2 Especially we recommend the
following functions:

dctool.m - Graphical interface for displaying the status and managing of a distributed com-
puting network (Fig. 4).3 This GUI tool allows complete real-time monitoring of jobs and
tasks. It enables to submit or destroy specific job, create JobReport (Fig. 5) that shows
time consumption of all tasks in the job per worker.

listJobs.m - Displays a summary of jobs in the job manager.4 This command line tool has one
input - handle of job manager for which it shows the list of jobs (Fig. 6).

listTasks.m - Displays the summary of tasks belonging to a job.5 This command line tool has
one input - handle of job for which it shows the list of tasks (Fig. 7).

There is only one strong limitation of listed tools that is based on the network speed, number of
workers, jobs and tasks in the job manager. The increasing number of those elements increase
the response time of tools as well. This limitation also occurre when user explore those elements
directly via exploring of structure array jm.

Figure 4: GUI of the dctool program
Figure 5: The Job Report figure created by the
dctool

2http://www.mathworks.com/matlabcentral/fileexchange/
3http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=8056&objectType=file
4http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9722&objectType=file
5http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=9722&objectType=file



Summary of jobs currently in job manager ’king_jobmanager’:

Tasks Tasks Tasks

Job ID Job name Username Job state Entered state pending running finished Errors

------ --------------------- -------- --------- ------------- ------- ------- -------- ------

37 My Calculation - KING ales running Oct 01 23:10 22 4 6 0

34 My Calculation - KING ales finished Oct 01 23:06 0 0 8 0

35 My Calculation - KING ales finished Oct 01 23:07 0 0 32 0

------- ------- --------

Totals 22 4 46

Job manager state: running

Number of busy workers: 4

Number of idle workers: 0

Total number of workers: 4

Figure 6: The Job Report figure created by the dctool

Summary of tasks belonging to job ’My Calculation - KING’ (job ID 37, username ales):

Task ID Task state Entered state Worker Function name Error identifier

------- ---------- ------------- ------ ------------- ----------------

1 finished Oct 01 23:11 king my_Task

2 finished Oct 01 23:11 Larry my_Task

3 finished Oct 01 23:11 king my_Task

4 finished Oct 01 23:11 Larry my_Task

5 finished Oct 01 23:11 Larry my_Task

6 finished Oct 01 23:11 Larry my_Task

7 running Oct 01 23:11 king my_Task (task still running)

8 running Oct 01 23:11 king my_Task (task still running)

9 running Oct 01 23:11 Larry my_Task (task still running)

10 running Oct 01 23:11 Larry my_Task (task still running)

11 pending Oct 01 23:10 my_Task (task not started yet)

12 pending Oct 01 23:10 my_Task (task not started yet)

13 pending Oct 01 23:10 my_Task (task not started yet)

...

Figure 7: The Job Report figure created by the dctool

4.2 Results Monitoring

Another way how to easily monitor the current status of job manager is in the use of the
monitoring tool based on the previously mentioned third party tools that would be created for
the MATLAB Web server. There is also opportunity to include in such interactive web tools
monitoring, starting and stoping of workers, in the computation cluster.

The next way that we have realized is tightly connected with already finished tasks and of
course probably will not be very suitable for smaller calculation. The main idea is in the storing
of tasks results in a specific place. This place can be realized by the FTP server or the mailbox.
We have possibility to send mails, download files from web pages, evaluate ftp commands directly
from MATLAB environment. We have used this feature for storing all results from tasks. The
following code presents how to easily save results and to upload them using a specific ftp server.
The given code should be implemented in the code for the task function. As it is obvious this
way of results monitoring can give us only information about just successfully finished tasks and
their final times.

1 %% Final Operations
2 save([’Task_’,nameCode,’.mat’]) zip([’Task_’,nameCode,’.zip’],...
3 {’Task_*.mat’,’*.tex’,’*.png’})
4 % Conection to to the localhost ftp server as anonymous user
5 ftp_connection = ftp(’localhost’,’anonymous’,’ales.pavelka@gmail.com’);
6 cd(ftp_connection,’upload’);
7 binary(ftp_connection);
8 mput(ftp_connection,’*.zip’);
9 close(ftp_connection);
10 % Clean up
11 delete([’Task_’,nameCode,’.zip’],’Task_*.mat’,’tab*.tex’,’*.png’)



5 Application of Distributed Computing for Signal Prediction

5.1 Methods and Algorithms

Our prediction system is able to find out the most suitable parameters and model architecture for
the following models: simple approximation model, autoregressive model (full, limited), neural
network (linear, feed-forward) and model used in the UDP6 for gas prediction.

Simple approximation model is based on the polynomial fit of values of gas consumption
against values of daily temperature. The resulting model is the polynomial of the n-th order.

The UDP model is a real model that is practically used for gas consumption prediction.
This model is based on the linear approximation of the specific input data set.

The autoregressive model (AR) has output signal y and unmeasured inputs called distur-
bance or noise e and na elements of parameter vector a in the form defined by relation

y(n) + a1y(n− 1) + . . . + anay(n− na) = e(n) (1)

In our calculations we use full autoregressive models alike as limited (cut, sub-set) models that
come out of full models but have limited number of parameters. This limitation is performed
by combination of autocorrelation, singular value decomposition and QRcp factorization.

The main part of our work is devoted to neural networks. The linear neural network is
formed by a one layer structure with its linear transfer function having the unknown slope.
Problem of finding minimal error is usually solved by the Widrow-Hoff algorithm. And thereby
this neural networks is by its own concept very close to the autoregressive models.

A feed-forward neural network we used with the two layer architecture. The first transfer
function was formed by a hyperbolic tangent sigmoid function and the second one by an unlimited
linear function with the unknown slope. The Levenberg-Marquardt backpropagation method
has been used as a basic learning algorithm for this network type.

5.2 Results

Practical calculation in cluster of eights computers has been done to solve the prediction problem
and suitable parameters have been searched for six prediction models. Original plan was to cal-
culate six models for 5 time zones (10.11.2003 – 10.04.2004, 10.12.2003 – 10.04.2004, 10.01.2004
– 10.04.2004, 10.02.2004 – 10.04.2004 and 10.03.2004 – 10.04.2004) that determine 5 separate
jobs. In one job we created optimistically 8232 tasks searching suitable model for values of gas
consumption (1–14), values of daily temperature (1–12), number of prediction outputs (1–7),
and lengths of prediction (1–7). Number of prediction outputs means that in one prediction
step the model predict possibly 7 values ahead e.i. the model has 7 outputs. The length of the
prediction determine how many values will be totaly predicted by all types of the given model.

After several hours of calculation in our cluster the whole system hang. This interruption
has been probably done by the overloading of job manager, but the real cause is unknown.
Obtained results (2962 files) form just a small piece of previously planed calculation for this
article. All results have been process and the best model for every model type has been selected.
The main key for model selection included the minimal values of MSE criteria, according to
this models presented in Tab. 1, Tab. 2 and in Fig. 8-13. Parameters of the best models are
organized in Tab. 1. It is obvious that from all calculated models the best ones predict one
single value to the future only.

Number of hidden neurones for feed-forward neural network has been set automatically to
the value 1, information about day is one of input parameters, model limitation for autoregressive
model has been set automatically to the value 9.

6Ústředńı plynárenský dispečink - Bilančńı centrum (http://www.bilancnicentrum.cz/)



Figure 8: Prediction results for polynomial model.

Figure 9: Prediction results for autoregressive model - full.



Figure 10: Prediction results for autoregressive model - short.

Figure 11: Prediction results for feed-forward neural network.



Figure 12: Prediction results for linear neural network.

Figure 13: Prediction results for UDP model.



Table 1: Parameters of selected models
number of prediction prediction

model days days output time gas temperature

polynomial 2004.03.10 – 2004.04.10 31 7 7 1 1
AR full 2004.03.10 – 2004.04.10 31 1 1 5 1
AR short 2004.01.10 – 2004.04.10 91 1 1 5 7
feed-forward NN 2004.01.10 – 2004.04.10 91 1 1 4 2
linear NN 2004.01.10 – 2004.04.10 91 1 1 6 2
UDP model 2004.03.10 – 2004.04.10 31 1 7 1 1

Table 2: Prediction error of selected models
model mean std min max SSE MSE

polynomial -2.029 2.5 -5.7 2.749 125.262 9.636
AR full 0.051 0 0.1 0.051 0.003 0.003
AR short -0.640 0 -0.6 -0.640 0.409 0.409
feed-forward NN -0.120 0 -0.1 -0.120 0.014 0.014
linear NN -0.049 0 -0.1 -0.049 0.002 0.002
UDP model -0.522 3.0 -3.9 4.913 57.500 8.214

6 Conclusion

Calculation of our example of investigation of 12 800 × 12 800 matrix takes on one computer
approximately more than 4 hours on the contrary with approximately less than 30 minutes of
calculation time in the cluster of 8 computers.

Installation, setup and managing of MATLAB cluster created by computers with DCE
and clients with DCT is very intuitive and fast. Very likely as basic programming principles of
distributed programming that is strongly supported by the first-quality documentation.

According to our experiences it is suitable to create tasks that have duration lower than
2-3 minutes. Creating small, faster tasks increases the number of tasks and consequently some
time is lost in network communication among job manager and workers and of course between
job manager and your client station.

The total number of tasks in one job should not be higher than 1024. The reasons why
not to create more tasks in one job are similar as in the previous case.

References

[1] The MathWorks. Distributed Computing Toolbox, Users Guide. The MathWorks, Inc.,
Natick, MA, version 2 edition, March 2006.

[2] The MathWorks. MATLAB Distributed Computing Engine, System Administrators Guide.
The MathWorks, Inc., Natick, MA, version 2 edition, March 2006.

Ing. Aleš Pavelka, Prof. Aleš Procházka
Institute of Chemical Technology, Prague
Department of Computing and Control Engineering
Technická 1905, 166 28 Prague 6
Phone.: 00420-2-2435 4198, Fax: 00420-2-2435 5053
E-mail: ales.pavelka@gmail.com, A.Prochazka@ieee.org
WWW: http://dsp.vscht.cz


