
IDTOOL 4.0 – A DYNAMICAL SYSTEM IDENTIFICATION
TOOLBOX FOR MATLAB/SIMULINK

L’. Čirka, M. Fikar, and P. Petruš

Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava

Abstract

The dynamical system IDentification TOOLbox (IDTOOL) for MATLAB/Simulink
is presented. This toolbox implements blocks for continuous-time and discrete-
time recursive least squares parameter estimation methods, respectively. The
work-house routine used is LDDIF.

1 Introduction

The most often used estimation methods nowadays are based on minimisation of squares of
errors between measured and estimated process output – the least squares method (RL). Main
advantages include the possibility of recursivity of calculations, possibility to track time variant
parameters, and various modifications to make the algorithm robust. Originally the method was
derived for estimation of parameters of discrete-time systems. Modifications are also possible
for continuous-time systems.

This paper describes the use of the dynamical system IDentification TOOLbox (IDTOOL).
The toolbox contains blocks for the identification of SISO (MIMO) linear time invariant systems.
The development is based on the work published in [2, 1]. The toolbox supports only polynomial
(transfer function) representation.

Previous versions of IDTOOL used S-function representation implemented in MATLAB
for all blocks. However, this is not an option in some cases. For example real-time environment
dSPACE can only use S-function in programming language C. Therefore, one of the new features
of this version is C representation of blocks.

2 Algorithm

The identification method used as a work-house routine is LDDIF — recursive least squares
algorithm with exponential and directional forgetting [2]. To improve the tracking performance,
the corrections as suggested by Bittanti [1] are implemented. In the principle, the corrections
influence the covariance matrix of the estimated parameters by adding some multiple of identity
matrix.

This recursive estimation algorithm for given observation vector φ(t) and parameter vector
θ(t − 1) can be described by the equations:

ε(t) = y(t) − φ(t)T θ(t − 1)

r(t) = φ(t)T P (t − 1)φ(t)

k(t) =
P (t − 1)φ(t)

1 + r(t)

β(t) =

{

ϕ −
1−ϕ
r(t) if r(t) > 0

1 if r(t) = 0

P (t) = P (t − 1) −
P (t − 1)φ(t)φ(t)T P (t − 1)

β(t)−1 + r(t)
+ δI

θ(t) = θ(t − 1) + k(t)ε(t)

where ϕ is exponential forgetting. The initial values for the algorithm are usually ϕ = 0.985,
P−1(0) = 106I , δ = 0.01.

3 Implementation

This algorithm has been implemented in Simulink as M-function lddif_s.m and C–MEX-
function lddif_c.dll with the inputs being observation vector φ(t) and actual process output
y(t), states being the estimated parameter matrix θ(t) and the covariance matrix P (t), and out-
puts being the same as states. As Simulink allows only for vectors and not matrices of signals,
all I/S/O vectors/matrices are stacked into corresponding column vectors. This formulation of
a parameter estimation method is fairly general and thus any other method can be used in the
place of LDDIF.

Of course, there are some parameters significant to LDDIF only (δ, λ) that are needed
as well. Furthermore, in the actual implementation, it is possible to specify a priori knowledge
about the parameters and their covariance matrix. For a more precise description of the LDDIF
implementation see the manual (http://www.kirp.chtf.stuba.sk/~cirka/idtool).

3.1 Discrete-time Case

Consider a discrete-time multi-input multi-output (MIMO) system of the form

A(z−1)y(t) = B(z−1)u(t) (1)

where A[n × n] and B[n × m] are polynomial matrices given as

A(z−1) = I + A1z
−1 + . . . + Anaz

−na (2)

B(z−1) = B1z
−1 + . . . + Bnb

z−nb (3)

The matrix of estimated parameters θ is therefore of the form

θT = (A1 . . . Ana B1 . . . Bnb
) (4)

The needed input data for LDDIF are the actual output vector y(t) together with the observation
vector φ(t) that are stacked together as

uT
lddif

= [yT (t) − yT (t − 1) . . . − yT (t − na)u
T (t − 1) . . . uT (t − nb)] (5)

The delayed signals are constructed using state–space filters.

3.1.1 Example

Let us assume case n = 2, m = 3, na = 1, nb = 2 and matrices

A1 =

(

a11 a12

a21 a22

)

, B1 =

(

b111 b112 b113

b121 b122 b123

)

(6)

B2 =

(

b211 b212 b213

b221 b222 b223

)

(7)

Then

uT
lddif

= [y1,t, y2,t,−y1,t−1,−y2,t−1, u1,t−1, u2,t−1, u3,t−1, u1,t−2, u2,t−2, u3,t−2]

(8)

θT =

(

a11 a12 b111 b112 b113 b211 b212 b213

a21 a22 b121 b122 b123 b221 b222 b223

)

(9)

In the Block Parameters (Fig. 1) of Discrete Identification block (Fig. 2), the following
data have been entered: Number of inputs and outputs - [in, out]: [3,2], Degrees of numerator
and denominator - [dn, dd]: [2,1]. All other parameters of this block can be left at default values.

Figure 1: Block Parameters: Discrete Identification

Figure 2: Library for identification of dynamical systems

3.2 Continuous-time Case

Consider a continuous-time MIMO system of the form

A(s)y(t) = B(s)u(t) (10)

where A[n × n] and B[n × m] are polynomial matrices of the form

A(s) = I + A1s + . . . + Anas
na (11)

B(s) = B0 + B1s + . . . + Bnb
snb (12)

or in the time domain as

y(t) = −A1y
′(t) − A2y

′′(t) − . . . − Anay(na)(t) + B0u(t) + B1u
′(t) + . . . + Bnb

u(nb)(t) (13)

The matrix of estimated parameters θ is therefore of the form

θT = (A1 . . . Ana B0 B1 . . . Bnb
) (14)

The needed input data for LDDIF are the actual output vector y(t) together with the observation
vector φ(t) that are stacked together as

uT
lddif = [yT (t) − y′T (t) . . . − y(na)T

(t)uT (t) u′T (t) . . . u(nb)
T

(t)] (15)

Because the desired derivatives of u(t),y(t) are not known, both input u(t) and output
y(t) are filtered by a system A−1

f so that

Ay(t) = Bu(t) ⇔ A−1
f Ay(t) = A−1

f Bu(t) ⇔ Ayf (t) = Buf (t) (16)

and thus the filtered variables are given as

Afyf (t) = y(t) (17)

Afuf (t) = u(t) (18)

As it can be seen from (16) the same relation holds for unfiltered and filtered signals.
Therefore, eq. (13) can be written with the subscripts f . The desired filtered variables and their
derivatives are easily obtained from (17) and (18).

The filter in IDTOOL is of the form

F (s) = A−1
f = (Tfs + 1)nf I (19)

The time constant Tf should generally be smaller than any time constant of the identified
system. The polynomial order nf must be at least equal to degree of the system denominator
degree na.

3.2.1 Example

Let us assume case n = 2, m = 2, na = 1, nb = 0 and matrices

A1 =

(

a11 a12

a21 a22

)

,B0 =

(

b11 b12

b21 b22

)

(20)

Then

uT
lddif = [y1, y2,−y′1,−y′2, u1, u2]

θT = [a11, a12, b11, b12, a21, a22, b21, b22]

(21)

Figure 3: Block Parameters: Continuous Identification

For the system assumed, let us consider the filter with nf = 1. From (17) and (18) follows

Tfy′1f + y1f = y1

Tfy′2f + y2f = y2

Tfu′

1f + u1f = u1

Tfu′

2f + u2f = u2

(22)

Defining the states
x1 = y1f x5 = u1f

x2 = y2f x6 = u2f

x3 = y′1f x7 = u′

1f

x4 = y′2f x8 = u′

2f

(23)

the equations (22) can be transformed into the corresponding state–space form. Using the
available states, (13) now reads

ẋ1 = −a11x3 − a12x4 + b11x5 + b12x6 (24)

ẋ2 = −a21x3 − a22x4 + b21x5 + b22x6 (25)

and may directly be used for identification.

In the Block Parameters (Fig. 3) of Continuous Identification block (Fig. 2), the following
data have been entered: Number of inputs and outputs - [in, out]: [2,2], Degrees of numerator
and denominator - [dn, dd]: [0,1], Time constant of filters - [Tc]: [1]. All other parameters of
this block can be left at default values.

4 Content of the Toolbox

The files included in the toolbox are as follows

lddif_s.m - the actual computational routine (M-file S-function)

lddif.c, lddif_c.c - the actual computational routine (C-file S-functions)

lddif_c.dll - the actual computational routine (MEX-file S-function)

idtool.mdl - simulink blocks

slblocks.m - defines the block library for a specific Toolbox or Blockset

id_demo1.mdl - demo identification of a continuous–time SISO system

id_demo2.mdl - demo identification of a discrete–time SISO system

id_demo3.mdl - demo identification of a continuous–time MIMO system

id_demo4.mdl - demo identification of a discrete–time MIMO system

tutorXX.mdl - simulink tutorial files

contents.m - contents of the files

demos.m - demo list information for IDTOOL Toolbox

info.xml - plugin of IDTOOL to the Start button (Block Library, Help, Demos, Product Page
(Web))

5 Use of the Toolbox
5.1 Requirements

The IDTOOL toolbox v 4.0 can be used under MATLAB 5.3, 6.x and 7.x (older versions of
MATLAB are not supported), and will run on most hardware. External toolboxes are not
required.

5.2 Installing the Toolbox

The installation procedure is very easy. Just add the path to the directory where you have
copied all the files to the standard MATLAB path. To load the blocks, simply write idtool at
the MATLAB command line.

5.3 Help

To see a list of all the commands and functions that are available type help idtool. To get
help on any of the toolbox commands, such as lddif_s, type help lddif_s.

6 Conclusions

The IDTOOL toolbox written in MATLAB language and C language, has been presented for
system identification on the basis of work-house routine LDDIF. It has been designed as a
tool for students and researchers. Toolbox provides a possibility to better understand different
modifications of base recursive least squares algorithm as well as automation of the routine tasks.

The functions described in this paper are freely available for academic research per WWW1.
A zipped file with the latest collection of MATLAB routines can be downloaded from there.

Acknowledgments

The authors are pleased to acknowledge the financial support of the Scientific Grant Agency of
the Slovak Republic under grants No. 1/1046/04 and 1/3081/06.

1http://www.kirp.chtf.stuba.sk/~cirka/idtool/

References

[1] S. Bittanti, P. Bolzern, and M. Campi. Exponential convergence of a modified directional
forgetting identification algorithm. Systems & Control Letters, 14:131–137, 1990.

[2] R. Kulhavý and M. Kárný. Tracking of slowly varying parameters by directional forgetting.
In Proc. 9th IFAC World Congr., Budapest, Hungary, pages 79–83, 1984.

Ing. L’uboš Čirka, PhD; doc. Dr. Ing. Miroslav Fikar; Ing. Peter Petruš
Institute of Information Engineering, Automation, and Mathematics,
FCFT SUT in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
e-mail: lubos.cirka@stuba.sk, miroslav.fikar@stuba.sk

