

Numerical modeling that predicts, optimizes and innovates

From Concept to Simulation: SIMTEC, your COMSOL Partner for Game-Changing Innovation

Humusoft COMSOL Conference 2025 May 22th 2025

Frédéric Viry – Modelling expert Patrick Namy – CEO and founder SIMTEC, 5 rue Félix Poulat, 38000 Grenoble, France

Property of SIMTEC - All rights reserved

that predicts, optimizes and innovates

Outline

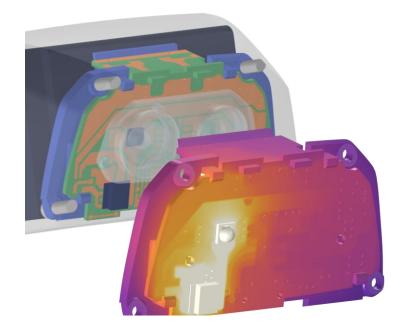
- I. SIMTEC : Who we are
- II. Case study 1: Heat dissipation in a head lamp
- III. Case study 2: Thermal and mechanical multiscale modelling
- IV. Q&A session

that predicts, optimizes and innovates

SIMTEC: Who we are... www.simtecsolution.fr

SIMTEC : Fundamentals

- French Numerical modelling consultancy
- Leader in France of the COMSOL Certified Consultants, key partner worldwide
- 9 members Eng.D. + Ph.D.
- Main partners:
 - big international companies
 - laboratories
- Involved in the Research projects like EU FP (SHARK, SisAl)/ PhD supervision



that predicts, optimizes and innovates

Case study 1: Heat dissipation in a head lamp

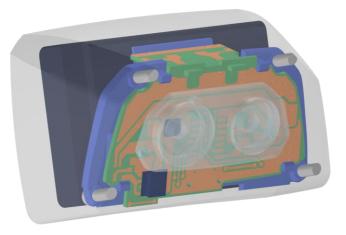
Modelling the Heat Dissipation of a Head Lamp within COMSOL Multiphysics®

F. Viry¹, P. Namy¹, C. Dupuis²
¹ SIMTEC, Grenoble (France)
² Decathlon B'twin Village, Lille (France)

COMSOL Conference 2023 Munich publication link

This work has been founded by DECATHLON and made in a fruitful collaboration between DECATHLON and SIMTEC.

Extracted from « Modeling the Heat Dissipation of a Head Lamp within COMSOL Multiphysics® », COMSOL Conference 2023, Link.

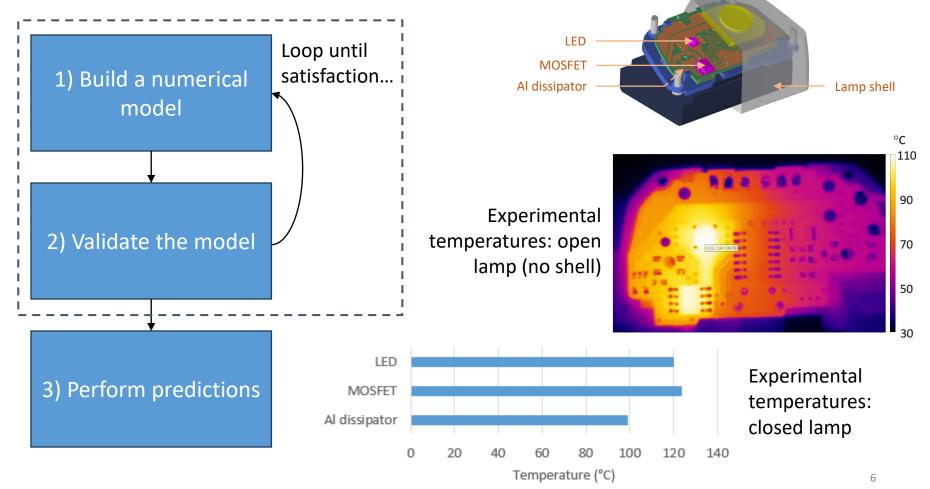

that predicts, optimizes and innovates

Case study 1: Heat dissipation in a head lamp

Context and objectives

- Serial production of head lamps
- Goal: reducing the environmental footprint
- Employing other materials having other properties...
- ... Requiring to redesign some parts
- → Thermal performance of new designs?
 - ❑ No overheating of the electronic components
 - No hot spots neat the user

→ Estimating the heat dissipation performances using a numerical model!



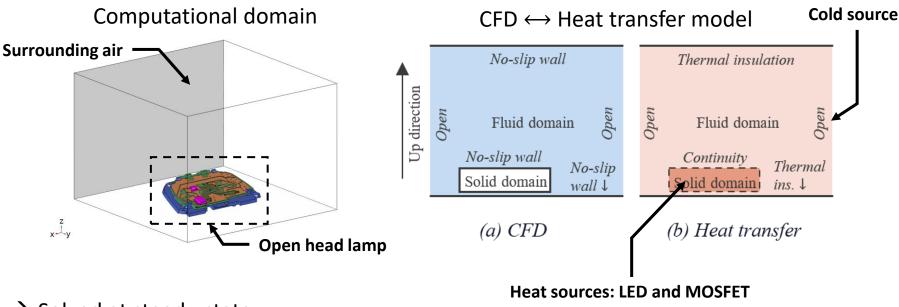
that predicts, optimizes and innovates

Case study 1: Heat dissipation in a head lamp

Context and objectives

A few components of the lamp

Extracted from « Modeling the Heat Dissipation of a Head Lamp within COMSOL Multiphysics® », COMSOL Conference 2023, Link.


that predicts, optimizes and innovates

Case study 1: Heat dissipation in a head lamp

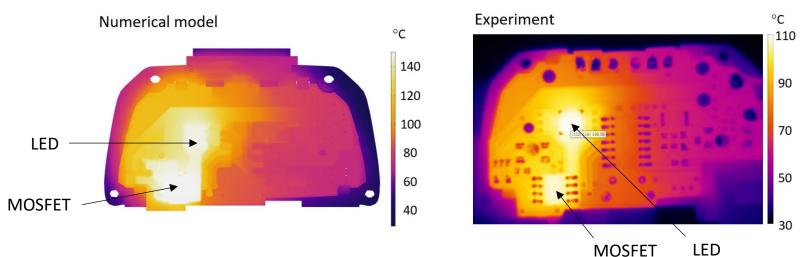
Modelling – Open lamp

Hypotheses:

- Main heat dissipation processes: conduction and natural convection (no radiation)
- Laminar natural convection (Grashof number)

\rightarrow Solved at steady-state

→ Conduction + Natural convection : very natural coupling in COMSOL Multiphysics!


Extracted from « Modeling the Heat Dissipation of a Head Lamp within COMSOL Multiphysics® », COMSOL Conference 2023, Link.

that predicts, optimizes and innovates

Case study 1: Heat dissipation in a head lamp

Results – Open lamp

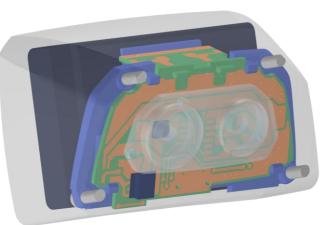
Temperature cartography: numerical model vs. experiment

Qualitative agreement 🗸

Quantitatively: numerical temperatures \gg experimental temperatures

→ Very good first step! → But a dissipation process seems to be missing: radiative transfers

Extracted from « Modeling the Heat Dissipation of a Head Lamp within COMSOL Multiphysics[®] », COMSOL Conference 2023, Link.

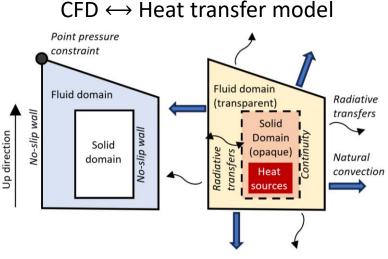

that predicts, optimizes and innovates

Case study 1: Heat dissipation in a head lamp

Modelling – Closed lamp

Hypotheses:

- -Main heat dissipation processes: **conduction** and **natural convection** (no radiation)
- **Laminar** natural convection (Grashof number)

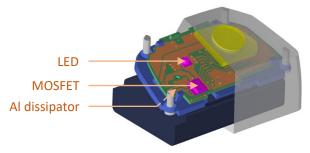

Computational domain

Surrounding air is not explicitely represented

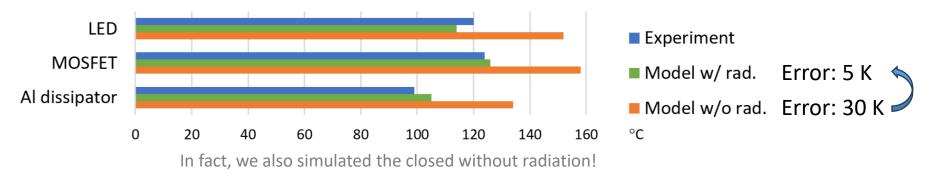
\rightarrow Solved at steady-state

\rightarrow Conduction + Natural convection + Surface-to-surface radiation: still a very natural coupling in COMSOL Multiphysics! 9

Extracted from « Modeling the Heat Dissipation of a Head Lamp within COMSOL Multiphysics® », COMSOL Conference 2023, Link.



that predicts, optimizes and innovates


Case study 1: Heat dissipation in a head lamp

Results – Closed lamp

A few components of the lamp

Local temperature measurements: numerical model vs. experiment

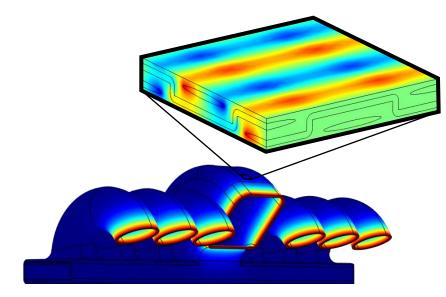
 \rightarrow By taking into account radiation: the model is far more accurate! \checkmark

\rightarrow Validated model: ready to make predictions and answer design issues! \checkmark

Extracted from « Modeling the Heat Dissipation of a Head Lamp within COMSOL Multiphysics[®] », COMSOL Conference 2023, Link.

that predicts, optimizes and innovates

Case study 1: Heat dissipation in a head lamp


Conclusions and Perspectives

- \rightarrow Modelling is an iterative process:
 - 1) We make simplifying hypotheses
 - 2) We build models upon these
 - 3) Whenever it's possible: we compare the model with experiments
 - 4) We get back to step 1) until the model is accurate enough
- → COMSOL is a well adapted tool to efficiently address heat transfer issues in complex geometries:
 - CAD imports and geometry operations
 - Very natural couplings (physics, solvers...)
- → On this specific case study: we developed an accurate head lamp thermal model, making it possible to evaluate heat dissipation performance of new designs

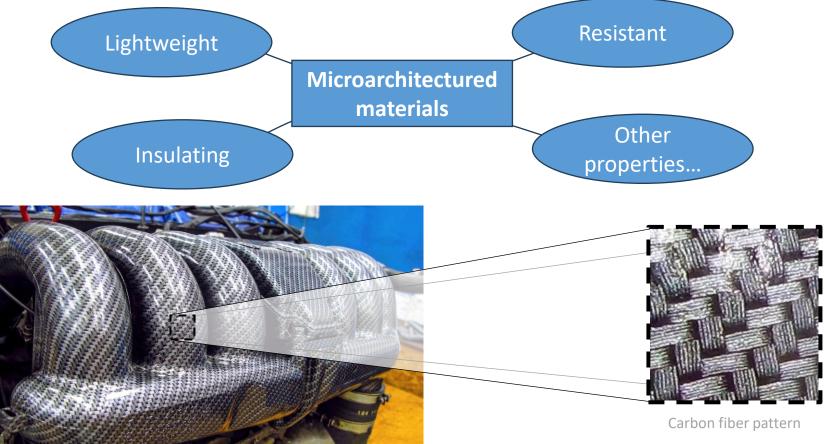
that predicts, optimizes and innovates

Case study 2: Thermal and mechanical multiscale modelling

Heat Transfers and Solid Mechanics in Microarchitectured Materials using Periodic Homogenization

F. Viry¹, J.-D. Wheeler¹, P. Namy¹ ¹SIMTEC, Grenoble (France)

COMSOL Conference 2023 Munich publication link



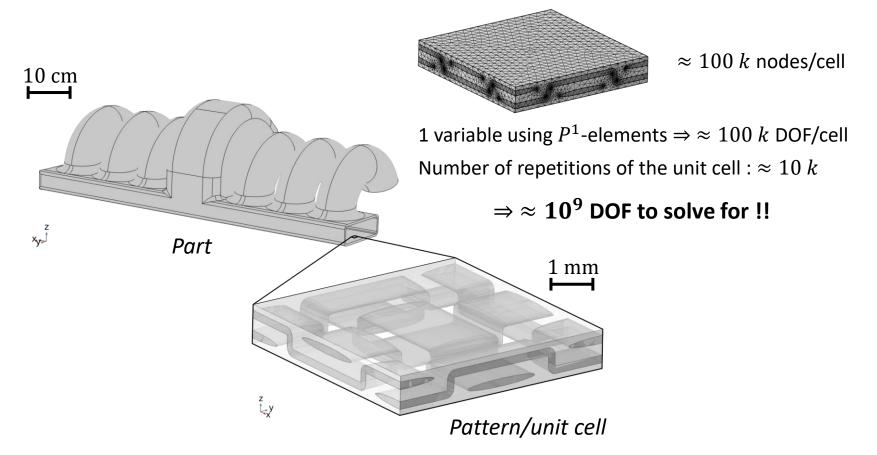
that predicts, optimizes and innovates

Case study 2: Thermal and mechanical multiscale modelling

Context and objectives

Intake manifold photo from Shutterstock

\rightarrow How to design and evaluate the performance of my part using such materials?



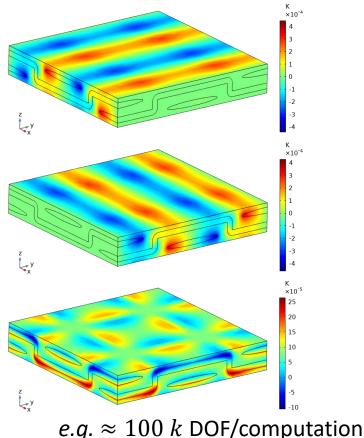
that predicts, optimizes and innovates

Case study 2: Thermal and mechanical multiscale modelling

Context and objectives

What about direct FEA?

→ We must rely on a more sophisticated approach: *e.g.* periodic homogenization method!

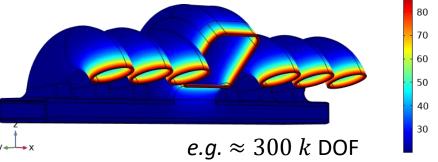


that predicts, optimizes and innovates

Case study 2: Thermal and mechanical multiscale modelling

Modelling – Principles of periodic homogenization

Step 1: submit the microstructure to unitary solicitations (FEM computations)


Step 2: compute homogenized properties (post-treatments)

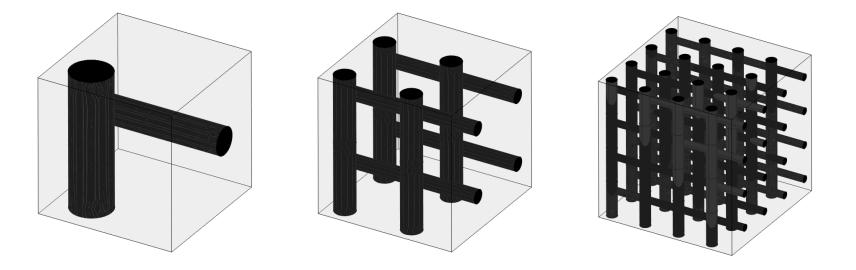
> \rightarrow Conductivity matrix \rightarrow Elasticity tensor

 $\rightarrow \dots$

Step 3: compute state of the degC homogenized part (FEM computation)

90

Step 4: relocate \rightarrow combine macroscopic and microscopic results to get accurate results at microscale (post-treatment)


that predicts, optimizes and innovates

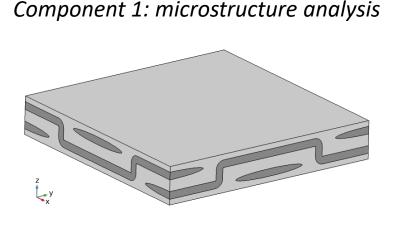
16

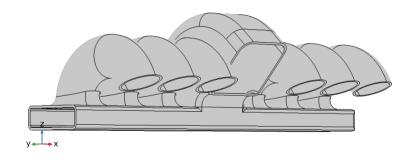
Case study 2: Thermal and mechanical multiscale modelling

Modelling – Theoretical results of periodic homogenization

+ Size of the unit cell compared the system under study

Accuracy of the method (theoretically guaranteed!)


Identical computational cost !


that predicts, optimizes and innovates

Case study 2: Thermal and mechanical multiscale modelling

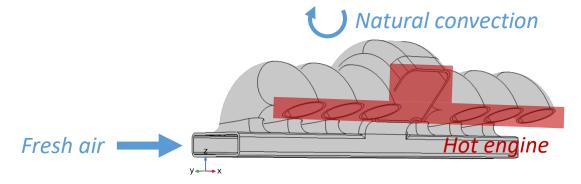
Modelling – COMSOL implementation

Component 2: macrostructure analysis

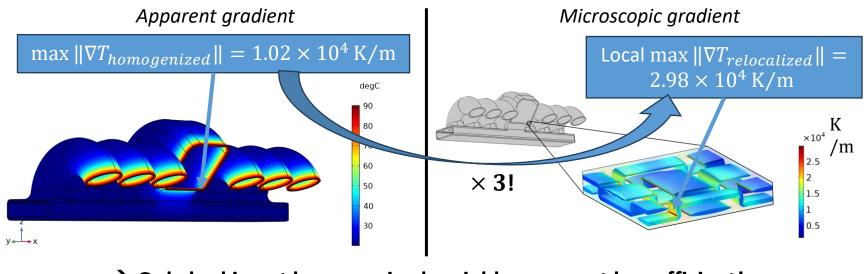
17

Non-exhaustive practical issues :

- □ Non-conventional system of PDEs
- □ Numerical care is needed: meshing, discretization orders...
- □ Automation required to implement *long* formulas


\rightarrow COMSOL Multiphysics[®] is flexible enough for that!

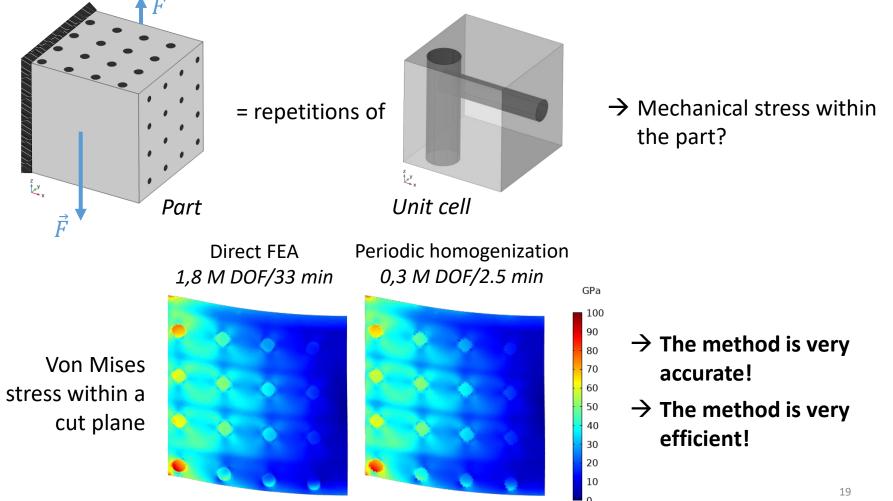
that predicts, optimizes and innovates


Case study 2: Thermal and mechanical multiscale modelling

Main Results – Heat transfer study case

Goal: preventing delamination → maximal thermal gradient?

18


→ Only looking at homogenized variables may not be sufficient!

that predicts, optimizes and innovates

Case study 2: Thermal and mechanical multiscale modelling

Main Results – Solid mechanics study case

that predicts, optimizes and innovates

Case study 2: Thermal and mechanical multiscale modelling

Conclusions and Perspectives

- → Understanding and predicting the microscopic behavior of parts made of microarchitectured materials is important to design them
- → Periodic homogenization is one of the techniques making the numerical analysis affordable and accurate

 \rightarrow Major contribution: generic implementation within COMSOL Multiphysics[®] for:

- □ Heat transfers by conduction
- □ Solid mechanics
- \rightarrow What about next steps?
 - □ Handling more physics
 - Dealing with nonlinearities
 - □ Applying the method to more industrial cases!

that predicts, optimizes and innovates

Q&A session

Thank you!

Q&A?

Our question: Who would like to try on our models? 😳

Frédéric Viry SIMTEC (+33) (0)9 53 51 45 60 frederic.viry@simtecsolution.fr