Topological optimization of electric motors

Jan Kaska 2025

Additive manufacturing is not just prototyping

Additive manufacturing is not just prototyping

Companies using printers for the production of final parts* 2017: 27 % 2021: 62 %

ISO / ASTM standardization

* Jabil, d. r. 3D PRINTING TECHNOLOGY TRENDS, A Survey of Additive Manufacturing Decision-Makers, MARCH 2021

→ Magnetic cores

- \rightarrow Soft magnetic materials (guiding the magnetic flux)
- \rightarrow Hard magnetic materials (permanent magnets)

→ Magnetic cores

- \rightarrow Soft magnetic materials (guiding the magnetic flux)
- \rightarrow Hard magnetic materials (permanent magnets)
- → Windings
 - \rightarrow Electrically conductive materials
 - \rightarrow Electrically insulating materials

→ Magnetic cores

- \rightarrow Soft magnetic materials (guiding the magnetic flux)
- \rightarrow Hard magnetic materials (permanent magnets)
- → Windings
 - \rightarrow Electrically conductive materials
 - \rightarrow Electrically insulating materials
- → Machine frames and cooling
 - \rightarrow Structural materials
 - \rightarrow Thermally conductive materials

→ What AM brings?

- \rightarrow New machines topologies
- \rightarrow Complex magnetic flux routes
- \rightarrow Geometries with inner channels
- \rightarrow Merging multiple parts into one
- \rightarrow Functional anisotropy

→ Powder Bed Fusion

- \rightarrow Most common technology (54 % of AM market 2019)*
- \rightarrow Powder + Laser / Electron beam

* Cherdo, L. Metal 3D printers in 2021: a comprehensive guide. https://www.aniwaa.com/buyers-guide/3d-printers/best-metal-3d-printer/.

→ Powder Bed Fusion

- \rightarrow Most common technology (54 % of AM market 2019)*
- \rightarrow Powder + Laser / Electron beam
- → Binder Jetting
 - \rightarrow Powder + Binder + Sintering

→ Powder Bed Fusion

- \rightarrow Most common technology (54 % of AM market 2019)*
- \rightarrow Powder + Laser / Electron beam
- → Binder Jetting
 - \rightarrow Powder + Binder + Sintering
- → Directed Energy Deposition
 - \rightarrow Lower accuracy, part of CNC systems

State of the art

Laminated

rotor

3D printed

rotor

State of the art

- → Powder Bed Fusion
 - \rightarrow Most widespread technology

State of the art

- → Powder Bed Fusion
 - \rightarrow Most widespread technology
- → Magnetic cores
 - \rightarrow The materials have the required properties
 - \rightarrow Little use of optimization techniques
 - \rightarrow Insufficient iron loss reduction

State of the art / Iron loss reduction

→ Grooves / Slots

 \rightarrow Problem of minimum gap width and wall thickness

* Tiismus, H. et al. AC magnetic loss reduction of SLM processed Fe-Si for additive manufacturing (...). Energies. 2021, 14, 5, s. 1241. ** Urbanek, S. – Ponick, B. Surface eddy current loss reduction (...). In 2018 XIII ICEM, s. 1317–1322. IEEE, 2018.

State of the art / Iron loss reduction

→ Grooves / Slots

 \rightarrow Problem of minimum gap width and wall thickness

→ Inner structures

 \rightarrow Hard to pour out the remaining powder

* Plotkowski, A. et al. Influence of scan pattern and geometry on the microstructure (...). Additive Manufacturing. 2019, 29, s. 100781

** Goll, D. et al. Additive manufacturing of soft magnetic materials and components. Additive Manufacturing. 2019, 27, s. 428–439

State of the art / Iron loss reduction

- → Grooves / Slots
 - \rightarrow Problem of minimum gap width and wall thickness

→ Inner structures

 \rightarrow Hard to pour out the remaining powder

→ Multimaterial printing

- \rightarrow Low technology availability
- \rightarrow Combinable metals have similar properties

- * Goll, D. et al. Additive manufacturing of soft magnetic materials and components. Additive Manufacturing. 2019, 27, s. 428–439.
- ** Jhong, K.-J. et al. Characteristic of high frequency Fe-Si-Cr material for motor application by selective laser melting. AIP Advances. 2019, 9, 3.

Setup	Linearity	Frequency	Objective	Initial cond.	Constraint	Exponents
1	Linear	25, 50, 100, 250	P	1	> 0.9	Manual
2	Linear	25, 50, 100, 250	P	1	> 0.9	Automatic
3	Linear	25	P	1	> 0.9	Manual
4	Linear	50	P	1	> 0.9	Manual
5	Linear	250	P	1	> 0.9	Manual
6	Linear	25, 50, 100, 250	P	1	> 0.8	Manual
7	Linear	25, 50, 100, 250	P	1	> 0.95	Manual
8	Linear	25, 50, 100, 250	P, ϕ	1	-	Manual
9	Linear	25, 50, 100, 250	$P, 2\phi$	1	-	Manual
10	Linear	25, 50, 100, 250	$P, 4\phi$	1	-	Manual
11	Linear	25, 50, 100, 250	P/f	1	> 0.9	Manual
12	Linear	25, 50, 100, 250	P	Stripes	> 0.5	$Manual^{\dagger}$
13	Nonlinear 1 [*]	25, 50, 100, 250	P	1	> 0.9	Manual
14	Nonlinear 2**	25, 50, 100, 250	P	1	> 0.9	Manual

* MS1 BH curve, ** FeSi BH curve, † Previous step was used

13

→ Resulting structures can be tiled

→ 3D geometry

- \rightarrow Boundary conditions can't be periodic
- \rightarrow Single frequency, linear material

0.5 mm

 $1 \mathrm{mm}$

 $1.5 \mathrm{mm}$

2 mm

2.5 mm

Volume

- \rightarrow Maximization of torque
- \rightarrow Minimization of torque ripple
- \rightarrow Initial condition: Original geometry

Thank you. Questions?

