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Abstract 

The viscous, two-dimensional, incompressible and laminar time dependent heat 
transfer flow through a ferromagnetic fluid is considered in this paper. Flow takes 
place in channel between two porous walls under the influence of the magnetic dipole 
located beyond the channel. It is assumed that there is no electric field effects and the 
variation in the magnetic field vector that could occur within the ferrofluid is 
negligible. This magneto-thermo-mechanical problem is governed by dimensionless 
equations. Results are obtained using standard computational fluid dynamics code 
COMSOL with modifications to account for the magnetic term when needed. 

1 Introduction 
In this paper time dependent heat transfer through a ferrofluid in channel flow under the 

influence of the magnetic dipole is considered and simulated. Results are obtained using standard 
computational fluid dynamics code COMSOL with modifications to account for the magnetic term 
when needed.  

During the last decades, an extensive research work has been done on the fluids dynamics in 
the presence of magnetic field. The effect of magnetic field on fluids is worth investigating due to its 
innumerable applications in wide spectrum of fields. The study of interaction of the magnetic field or 
the electromagnetic field with fluids have been documented e.g. among nuclear fusion, chemical 
engineering, medicine, high speed noiseless printing and transformer cooling.  

One of the most exciting areas of technology to emerge in recent years is MEMS 
(micromechanical systems), where engineers design and build systems with physical dimensions in 
micrometers, e.g. MEMS-based biosensors or microscale heat exchangers. The transport of 
momentum and energy in miniaturized devices is diffusion limited because of their very low Reynolds 
numbers. Using ferrofluids in these applications and manipulating the flow of ferrofluids in these 
applications by external magnetic field can be a viable alternative to enhance convection in these 
devices.  

Ferrofluids are non-conducting fluids and the study of the effect of magnetisation has yielded 
interesting information. In equilibrium situation the magnetization property is generally determined by 
the fluid temperature, density and magnetic field intensity and various equations, describing the 
dependence of static magnetization on these quantities. The simplest relation is the linear equation of 
state, given by [And1998]. It can be assumed that the magneto-thermo-mechanical coupling is not 
only described by a function of temperature [And1998], but by an expression involving also the 
magnetic field strength [Mat1997]. This assumption permit us not to consider the ferrofluid far away 
from the sheet at Curie temperature in order to have no further magnetization. This feature is essential 
for physical applications because the Curie temperature is very high (e.g. 1043 Kelvin degrees for 
iron) and such a temperature would be meaningless for applications concerning most of ferrofluids. So 
instead of having zero magnetization far away from the sheet, due to the increase of fluid temperature 
up to the Curie temperature this formulation allows us to consider whatever temperature is desired and 
the magnetisation will be zero due to the absence of the magnetic field sufficiently far away from the 
sheet [Tzi2003]. 

Moreover, ferrofluids are mostly organic solvent carriers having ferromagnetic oxides, acting 
as solute. Ferrofluids consist of colloidal suspensions of single domain magnetic nanoparticles. They 
have promising potential for heat transfer applications, since a ferrofluid flow can be controlled by 
using an external magnetic field [Gan2004]. However, the relationship between an imposed magnetic 
field, the resulting ferrofluid flow and the temperature distribution is not understood well enough. The 
literature regarding heat transfer with magnetic fluids is relatively sparse. 



An overview of prior research on heat transfer in ferrofluid flows e.g. thermomagnetic free 
convection, thermomagnetic forced convection and boiling, condensation and multiphase flow are 
presented in paper [Gan2004]. Many researchers are seeking new technologies to improve the 
operation of existing oil-cooled electromagnetic equipment. One approach suggested in literature is to 
replace the oil in such devices with oil-based ferrofluids, which can take advantage of the pre-existing 
leakage magnetic fields to enhance heat transfer processes. In paper [Tan1999] authors present results 
of an initial study of the enhancement of heat transfer in ferrofluids in magnetic fields which are 
steady but variable in space. Finite element simulations of heat transfer to a ferrofluid in the presence 
of a magnetic field are presented for flow between flat plates and in a box. The natural convection of a 
magnetic fluid in a partitioned rectangular cavity was considered in paper [Yam2002]. It was found 
that the convection state may be largely affected by improving heat transfer characteristic at higher 
Rayleigh number when a strong magnetic field was imposed. The influence of a uniform outer 
magnetic field on natural convection in square cavity was presented in paper [Kra2002]. It was 
discovered that the angle between the direction of temperature gradient and the magnetic field 
influences the convection structure and the intensity of heat flux. Numerical results of combined 
natural and magnetic convective heat transfer through a ferrofluid in a cube enclosure were presented 
in paper [Sny2003]. The purpose of this work was to validate the theory of magnetoconvection. The 
magnetoconvection is induced by the presence of magnetic field gradient. The Curie law states that 
magnetization is inversely proportional to temperature. That is way the cooler ferrofluid flows in the 
direction of the magnetic field gradient and displaces hotter ferrofluid. This effect is similar to natural 
convection were cooler, more dense material flows towards the source of gravitational force. Results 
were obtained using standard computational fluid dynamics codes with finite element method.  

The effect of magnetic field on the viscosity of ferroconvection in an anisotropic porous 
medium was studied in paper [Ram2004]. It was found that the presence of anisotropic porous 
medium destabilizes the system, where as the effect of magnetic field dependent viscosity stabilizes 
the system. In this paper the investigated fluid was assumed to be incompressible having variable 
viscosity. Experimentally it has been demonstrated in prior research that the magneto viscosity has got 
exponential variation, with respect to magnetic field. As a first approximation for small field variation, 
linear variation of magneto viscosity has been used in paper [Ram2004]. The effect of magnetic field 
dependent (MFD) viscosity (magnetoviscosity) on ferroconvection in a rotating sparsely distributed 
porous medium has been studied in paper [Vai2002]. The effect of MFD viscosity on thermosolutal 
convection in ferromagnetic fluid has been considered for a ferromagnetic fluid layer heated and 
soluted from below in the presence of a uniform vertical magnetic field [Sun2005]. Using the 
linearized stability theory and the normal mode analysis method, an exact solution was obtained for 
the case of two free boundaries. 

 One of the problems associated with drug administration is the inability to target a specific 
area of the body. Among the proposed techniques for delivering drugs to specific locations within the 
human body, magnetic drug targeting [Vol2002, Rit2004] surpasses due to its non-invasive character 
and its high targeting efficiency. Although the method has been proposed almost 30 years ago, the 
technical problems obstruct possible applications. It was the aim of the paper [Vol2002] to classify the 
emerging problems and propose satisfactory answers. A general phenomenological theory was 
developed and a model case was studied, which incorporates all the physical parameters of the 
problem. A hypothetical magnetic drug targeting system, utilizing high gradient magnetic separation 
principles, was studied theoretically using FEMLAB simulations in paper [Rit2004]. This new 
approach uses a ferromagnetic wire placed at a bifurcation point inside a blood vessel and an 
externally applied magnetic field, to magnetically guide magnetic drug carrier particles through the 
circulatory system and then to magnetically retain them at a target site. 

 

2 The governing equations 
2.1 Magnetostatic and quasi-static fields 

Under certain circumstances it can be helpful to formulate the problems of electromagnetic 
analysis in terms of the electric scalar potential V and the magnetic vector potential A . They are given 
by the equalities [Kov1990] 



AB ×∇= , 
t

V
∂
∂−−∇= AE  (2.1) 

The defining equation for the magnetic vector potential is a direct consequence of the magnetic 
Gauss’ law. The electric potential results from Faraday’s law. Using the definitions of the potentials 
and the constitutive relation ( )MHB += 0µ , Ampère’s law can be rewritten as  
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The equation of continuity, which is obtained by taking the divergence of the above equation, 
gives us the equation  
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�

�
�
�

� −∇+×∇×−
∂
∂⋅∇− eV

t
JAvA σσσ  (2.3) 

These two equations give us a system of equations for the two potentials A  and V .  

In the static case we have the equations  

( )( ) 0=−∇+×∇×−⋅∇− eV JAv σσ , (2.4) 

( ) ( ) eV JAvMA =∇+×∇×−−×∇×∇ − σσµ 1
0 . (2.5) 

The term ( )Av ×∇×σ  represents the current generated motion with a constant velocity in a 

static magnetic field, eB BvJ ×= σ . Similarly the term V∇−σ  represents a current generated by a 
static electric field, eE EJ σ= . 

If 0v =  the equations decouple and can be solved independently. The other formulation is the 
single equation  

( ) e~JMA =−×∇×∇ −1
0µ . (2.6) 

The conductivity cannot be zero anywhere when the electric potential is part of the problem, as 
the dependent variables would then vanish from the first equation.  

Simplifying to a two-dimensional problem with perpendicular currents that are 0 it should be 
noted that this implies that the magnetic vector potential has a nonzero component only 
perpendicularly to the plane  

( )zA,,00=A . (2.7) 

Ampère’s law can be rewritten as 

( ) 0M =−×∇×∇ −
zA1

0µ . (2.8) 

Along a system boundary reasonably far away from the magnet we can apply a magnetic 
insulation boundary condition 0=zA . Solving equation (2.8) together with the constitutive relation we 
can get magnetic vector potential. Using AB ×∇=  and the constitutive relation we can get  
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2.2 The magnetic field intensity 

In this paper the considered flow is influenced by magnetic dipole. We assumed that the 
magnetic dipole is located at distance b below the sheet at point ( )b,a . The magnetic dipole gives 

rise to a magnetic field, sufficiently strong to saturate the fluid. In the magnetostatic case where there 
are no currents present, Maxwell-Ampere’s law reduces to 0H =×∇ . When this holds, it is also 



possible to define a magnetic scalar potential by the relation mV−∇=H  and its scalar potential for the 
magnetic dipole is given by [And1998] 

( ) ( ) ( ) ( )2
2

2
1

1
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x,xVV mm −+−
−== γx . (2.10) 

where γ  is the magnetic field strength at the source (of the wire) and ( )b,a  is the position were the 
source is located. 

 

2.3 Heat transfer and fluid flow 

The governing equations of the fluid flow under the action of the applied magnetic field and 
gravity field are: the mass conservation equation, the fluid momentum equation and the energy 
equation for temperature in the frame of Boussinesque approximation. 

The mass conservation equation for an incompressible fluid is 

0=⋅∇ v . (2.11) 

The momentum equation for magnetoconvective flow is modified from typical natural 
convection equation by addition of a magnetic term  
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000 TTgp
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where 0ρ  is the density, v  is the velocity vector, p  is the pressure, T  is the temperature of the fluid, 

S  is the extra stress tensor, k is unit vector of gravity force and α  is the thermal expansion 
coefficient of the fluid. 

The energy equation for an incompressible fluid which obeys the modified Fourier’s law is 
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∂
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where k is the thermal conductivity, η  is the viscosity and Φη  is the viscous dissipation  
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The last term in the energy equation represents the thermal power per unit volume due to the 
magnetocaloric effects. 
 

2.4 The Kelvin body force for magnetoconvective flow  

The last term in the momentum equation represents the Kelvin body force per unit volume 

( )BMf ∇⋅= , (2.15) 

which is the force that a magnetic fluid experiences in a spatially non-uniform magnetic field. We 
have established the relationship between the magnetization vector and magnetic field vector 

HM mχ= . (2.16) 

Using the constitutive relation (relation between magnetic flux density and magnetic field 
vector) we can write the magnetic induction vector in the form  

( )HB mχµ += 10 . (2.17) 



The variation of the total magnetic susceptibility mχ  is treated solely as being dependent on 
temperature [Gan2004] 
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Finally, the Kelvin body force can be represented by 
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Using equation (2.19) we can write Eq. (2.12) and (2.13) in the form, respectively 
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and 
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2.5 The Brinkman equations for porous media flow 
 

Fluid and flow problems in porous media have attracted the attention of industrialists, engineers 
and scientists from varying disciplines, such as chemical, environmental, and mechanical engineering, 
geothermal physics and food science. There has been a increasing interest in heat and fluid flows 
through porous media [Ing2005]. 

The Brinkman equations describe flow in porous media where momentum transport by shear 
stresses in the fluid is of importance. The model extends Darcy’s law to include a term that accounts 
for the viscous transport, in the momentum balance, and introduces velocities in the spatial directions 
as dependent variables. The flow field is determined by the solution of the momentum balance 
equations in combination with the continuity equation 

FvSv ++⋅∇+−∇=
∂

∂
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p
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k
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t
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where η  is the viscosity, pk is the permeability of the porous structure (unit: 2m ). 

The Brinkman equations applications is of great use when modelling combinations of porous 
media and free flow. The coupling of free media flow with porous media flow is common in the field 
of chemical engineering. This type of problems arises in filtration and separation and in chemical 
reaction engineering, for example in the modelling of porous catalysts in monolithic reactors.  

Flow in the free channel is described by the Navier-Stokes equations and the mass conservation 
equation described in previous sections. In the porous domain, flow is described by the Brinkman 
equations according 
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and 

0=⋅∇ Bv . (2.24) 
 
 
 
 



3 The dimensionless equations 
 

For simplicity the preferred work choice is to work in non-dimensional frame of reference. Now 
some dimensionless variables will be introduced in order to make the system much easier to study 
[Str2005]. Moreover some of the dimensionless ratios can be replaced with well-known parameters: 
the Prandtl number Pr , the Rayleigh number Ra , the Eckert number Ec , the Reynolds number Re , 
the Darcy number Da  and the magnetic number Mn , respectively: 
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Since now primes will not be written (old variables symbols will be used) but it is important to 
remember that they are still there. The dimensionless form of Navier-Stokes (2.20) and thermal 
diffusion (2.21) equations are as follows: 
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Dimensionless Brinkman equations are as follows  

BBB
B  Da PrPrp
t

vSv +⋅∇+−∇=
∂

∂
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In the presents of magnetic field Kelvin body force is added 

fvSv
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4 Numerical solution and conclusions 
In this section we present numerical simulation results of heat transfer in ferrofluid. The flow 

takes place in channel and in channel with porous walls. The two-dimensional time dependent flows 
are assumed viscous, incompressible and laminar. Above the channel magnetic dipole is located. The 
fluid is assumed to be electrically nonconducting. It is assumed also that there is no electric field 
effects. This magneto-thermo-mechanical problem is governed by dimensionless equations (3.2-3.7). 

4.1 Heat transfer in ferrofluid in channel 

Considered flow takes place in channel between two parallel flat plates. The length of the 
channel is L  and distance between plates is h .  
The corresponding boundary conditions for dimensionless variables are assumed: 



• For the upper wall ( )10 =≤≤ y,Lx : the upper wall temperature is kept at constant 
temperature T/Tu δ . The velocity is 0 (no slip condition).   

• For the lower wall ( )00 =≤≤ y,Lx : the lower wall temperature is kept at constant 
temperature T/Tl δ . The velocity is 0 (no slip condition).  

• For inlet (the left wall) ( )100 ≤≤= y,x : the temperature is varying linearly from T/Tl δ  to 

T/Tu δ  and is given by equation 
T

T
y

T
TT

T llu
in δδ

+−=  where lu TTT −=δ . There is a parabolic 

laminar flow profile given by equation ( )14 0 −−= yy
u
u

u
r

in  for 1,0∈y  at the inlet end.  

• For outlet (the right wall) ( )10 ≤≤= y,Lx : the convective flux is assumed for temperature, 
( ) 0=∇−⋅ Tkn . Pressure outlet is also assumed, ( ) nnSI 0pp −=+− , where 0p  is the 

dimensionless atmospheric pressure.  

The following initial conditions for dimensionless variables are assumed: the fluid is motionless, the 
pressure is zero and the temperature is varying linearly from lower to upper wall.  

The time-dependent flow is considered for dimensionless time 500 .,t ∈ . The problem is solved with 
COMSOL code using direct UMFPACK linear system solver. Relative and absolute tolerance used in 
calculations are 0.05 and 0.005, respectively.  

The following values of temperatures are assumed 0TTl = , TTTu δ+= 0 where KT 3000 =  and 
KT 30=δ . 

 
TABLE 1  THE QUANTITIES FOR FERROFLUID FLOWS 

Quantity Flow A Flow B Flow C Flow D 

rH  3819.71 5092.95 9549.29 12732.39 
Mn  1.6961e+7 3.0154e+7 1.0601e+8 1.8846e+8 
Pr  1.4 1.4 1.4 1.4 
Ra  2.5701e+7 2.5701e+7 2.5701e+7 2.5701e+7 
Ec  2.1810e-12 2.1810e-12 2.1810e-12 2.1810e-12 

eR  0.7142 0.7142 0.7142 0.7142 

 

It can be observed that the maximum value of the magnitude of the velocity field of the flow in 
the channel under the magnetic dipole increases due to the value of the magnetic number.  

The flow was relatively uninfluenced by the magnetic field until its strength was large enough 
for the Kelvin body force to overcome the viscous force. It can be observed that the cooler ferrofluid 
flows in the direction of the magnetic field gradient and displaced hotter ferrofluid (Fig. 1,2). This 
effect is similar to natural convection where cooler, more dense material flows towards the source of 
gravitational force. Ferrofluids have promising potential for the heat transfer applications because a 
ferrofluid flow can be controlled by using an external magnetic field.  
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Figure 1. Time evolution of dimensionless velocity field (surface) and temperature contour of flow B 
for (a) t=0.01 (b) t=0.1 (c) t=0.2 C (d) t=0.3.  
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Figure 2. Comparison of dimensionless velocity field (surface) and temperature contour for the 
different values of magnetic number: (a) flow A (b) flow B (c) flow C (d) flow D.  

 

4.2 Heat transfer in ferrofluid in channel with porous walls 

Flow takes place in channel between two parallel porous domains. The length of the channel is L  and 
distance between porous domains is h . The length of porous domains are L  and the height are 

104 /h .  
 



The corresponding boundary conditions for dimensionless variables in channel flow are assumed: 
• For free-porous structure interface - the upper and the lower wall ( )010 ==≤≤ y,y,Lx , free-

porous structure interface: Bpp = . The expression for the pressure at the boundary between 
the channel and the porous domain states that the pressure is continuous across this interface. 

• For inlet (the left wall) ( )10,0 ≤≤= yx : the temperature is varying linearly from T/Tl δ  to 

T/Tu δ  and is given by equation 
T

T
y

T
TT

T llu
in δδ

+−=  where lu TTT −=δ . There is a parabolic 

laminar flow profile given by equation ( )14 0 −−= yy
u
u

u
r

in  for 1,0∈y  at the inlet end.  

• For outlet (the right wall) ( )10, ≤≤= yLx : the convective flux is assumed for temperature, 
( ) 0=∇−⋅ Tkn . Pressure outlet is also assumed, ( ) nnSI 0pp −=+− , where 0p  is the 

dimensionless atmospheric pressure.  

 
The corresponding boundary conditions for dimensionless variables in porous domain are assumed: 

• For free-porous structure interface: vv =B . These conditions imply that the components of 
the velocity vector are continuous over the interface between the free channel and the porous 
domain. 

• For the upper domain walls: the temperature is kept at constant temperature T/Tu δ . The 
velocity is 0 (no slip condition).  

• For the lower domain walls: the temperature is kept at constant temperature T/Tl δ . The 
velocity is 0 (no slip condition).  

 

The following initial conditions for dimensionless variables are assumed: the fluid is motionless, the 
pressure is zero and the temperature is T/Tl δ .  

The time-dependent flow is considered for dimensionless time 100 .,t ∈ . The problem is solved with 
COMSOL code using direct UMFPACK linear system solver. Relative and absolute tolerance used in 
calculations are 0.05 and 0.005, respectively.  

The following values of temperatures are assumed 0TTl = , TTTu δ+= 0 where KT 3000 =  and 
KT 30=δ . 

The heat transfer in ferrofluid flowing in channel with porous walls is considered in four different 
flows with different magnetic susceptibility, inlet velocity or permeability of the porous structure. The 
most interesting example of flow we can observe in the last considered flow (flow H). In this case the 
magnetoconvection is observe (Figure 4-5). We observe vortex created near the centre of magnetic 
dipole. Each vortex is moving from left to right where the magnetic field intensity is getting smaller. 
The intensity of magnetic field is plotted on each figure presented in this subsection as contour lines.  

 
TABLE 2  THE QUANTITIES FOR FERROFLUID FLOWS 

Quantity Flow E Flow F Flow G Flow H 

rH  12732.39 12732.39 12732.39 12732.39 

0χ  0.06 0.06 0.01 0.01 

0u  5e-3 5e-4 5e-2 5e-4 
Mn  1.8846e+8 1.8846e+8 1.8846e+8 1.8846e+8 
Pr  1.4 1.4 1.4 1.4 
Ra  2.5701e+7 2.5701e+7 2.5701e+7 2.5701e+7 
Ec  2.1810e-12 2.1810e-12 2.1810e-12 2.1810e-12 

eR  0.7142 0.7142 0.7142 0.7142 
Da  4000 4000 40 40 
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Figure 3. Comparison of dimensionless velocity field for the different flows in channel with porous 
walls: (a) flow E (b) flow F (c) flow G (d) flow H for time 10.t = . 
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Figure 4. Time evolution of dimensionless velocity field (surface) of flow H for (a) t=0.005 (b) 
t=0.025 (c) t=0.075 C (d) t=0.1. 
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Figure 5. Time evolution of dimensionless temperature (surface) of flow H for (a) t=0.005 (b) t=0.025 
(c) t=0.075 C (d) t=0.1. 
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